Wednesday, 28 December 2016

How Data Mining is Useful to Companies?

How Data Mining is Useful to Companies?

Every business, organization and government bodies are collecting large amount of data for research and development. Such huge database can make them to have the information on hand when required. But most important is that it takes much time to find important information from the data. "If you want to grow rapidly, you must take quick and accurate decisions to grab timely available opportunities."

By applying the process of data mining, you can easily extract and filter required information from data. It is a processing of refining data and extracting important information. This process is mainly divided into 3 sections; pre-processing, mining and validation. In pre-processing, large amount of relevant data are collected. The mining section includes data classification, clustering, error correction and linking information. The last but important is validate without which you can not make trust on information. In short, data mining is a process of converting data into authentic information.

Let's have look on how data mining is useful to companies.

Fast and Feasible Decisions: To search information from huge bundle of data require more time. It also irritates a person who is doing such. With annoyed mind one can not take accurate decisions that's for sure. By having help of data mining, one can easily get information and make fast decisions. It also helps to compare information with various factors so the decisions become more reliable. Data mining is helpful in every decision to make it quick and feasible.

Powerful Strategies: After data mining, information becomes precise and easy to understand. While making strategies, one can easily analyze information in various dimensions. This analysis helps to get real idea about the strategy implementation. Management bodies can implement powerful strategies effectively to expand business boundaries.

Competitive Advantage: Information is easily available and precise so that one can compare it with competitors' information. It is very much required that you must compare the data otherwise you will have to suffer in business. After doing competitive analysis, one can make corrective decisions to go ahead from competitors. This way company can gain competitive advantage.

Your business can get all the benefits of data mining at cutting rates through outsourcing.

Source : http://ezinearticles.com/?How-Data-Mining-is-Useful-to-Companies?&id=2835042

Friday, 16 December 2016

Data Scrapping

Data Scrapping

People who are involved in business activities might have came across a term Data Scrapping. It is a process in which data or information can be extracted from the Portable Document Format file. They are easy to use tools that can automatically arrange the data that are found in different format in the internet. These advanced tools can collect useful information's according to the need of the user. What the user needs to do is simply enter the key words or phrases and the tool will extract all the related information available from the Portable Document Format file. It is widely used to take information's from the no editable format.

The main advantage of Portable Document Format files are they protect the originality of the document when you convert the data from Word to PDF. The size of the file is reduced by compression algorithems when the file are heavier due to the graphics or the images in the content. A Portable Document Format is independent of any software or hardware for installation. It allows encryption of files which enhances the security of your contents.

Although the Portable Document Format files have many advantages,it too have many other challenges. For example, you want to access a data that you found on the internet and the author encrypted the file preventing you from printing the file, you can easily do the scrapping process. These functions are easily available on the internet and the user can choose according to their needs. Using these programs you can extract the data that u need.

Source : http://ezinearticles.com/?Data-Scrapping&id=4951020

Tuesday, 13 December 2016

Data Extraction - A Guideline to Use Scrapping Tools Effectively

Data Extraction - A Guideline to Use Scrapping Tools Effectively

So many people around the world do not have much knowledge about these scrapping tools. In their views, mining means extracting resources from the earth. In these internet technology days, the new mined resource is data. There are so many data mining software tools are available in the internet to extract specific data from the web. Every company in the world has been dealing with tons of data, managing and converting this data into a useful form is a real hectic work for them. If this right information is not available at the right time a company will lose valuable time to making strategic decisions on this accurate information.

This type of situation will break opportunities in the present competitive market. However, in these situations, the data extraction and data mining tools will help you to take the strategic decisions in right time to reach your goals in this competitive business. There are so many advantages with these tools that you can store customer information in a sequential manner, you can know the operations of your competitors, and also you can figure out your company performance. And it is a critical job to every company to have this information at fingertips when they need this information.

To survive in this competitive business world, this data extraction and data mining are critical in operations of the company. There is a powerful tool called Website scraper used in online digital mining. With this toll, you can filter the data in internet and retrieves the information for specific needs. This scrapping tool is used in various fields and types are numerous. Research, surveillance, and the harvesting of direct marketing leads is just a few ways the website scraper assists professionals in the workplace.

Screen scrapping tool is another tool which useful to extract the data from the web. This is much helpful when you work on the internet to mine data to your local hard disks. It provides a graphical interface allowing you to designate Universal Resource Locator, data elements to be extracted, and scripting logic to traverse pages and work with mined data. You can use this tool as periodical intervals. By using this tool, you can download the database in internet to you spread sheets. The important one in scrapping tools is Data mining software, it will extract the large amount of information from the web, and it will compare that date into a useful format. This tool is used in various sectors of business, especially, for those who are creating leads, budget establishing seeing the competitors charges and analysis the trends in online. With this tool, the information is gathered and immediately uses for your business needs.

Another best scrapping tool is e mailing scrapping tool, this tool crawls the public email addresses from various web sites. You can easily from a large mailing list with this tool. You can use these mailing lists to promote your product through online and proposals sending an offer for related business and many more to do. With this toll, you can find the targeted customers towards your product or potential business parents. This will allows you to expand your business in the online market.

There are so many well established and esteemed organizations are providing these features free of cost as the trial offer to customers. If you want permanent services, you need to pay nominal fees. You can download these services from their valuable web sites also.

Source:http://ezinearticles.com/?Data-Extraction---A-Guideline-to-Use-Scrapping-Tools-Effectively&id=3600918

Wednesday, 7 December 2016

Scraping in PDF Files - Improving Accessibility

Scraping in PDF Files - Improving Accessibility

Scraping of data is one procedure where mechanically information is sorted out that is contained on the Net in HTML, PDF and various other documents. It is also about collecting relevant data and saving it in spreadsheets or databases for retrieval purposes. On a majority of sites, text content can be easily accessed in the source code however a good number of business houses are making use of Portable Document Format. This format had been launched by Adobe and documents in this format can be easily viewed on almost any operating system. Some people convert documents from word to PDF when they need sending files over the Net and many convert PDF to word so that they could edit their documents. The best benefit that one gets for making use of it is that documents look a replica of the original and there is no form of disturbance in viewing them as they appear organized and same on almost all operating systems. The downside of the format is that text in such files is converted into a picture or image and then copying and pasting it is not possible any more.

Scraping in this format is a procedure where data is scraped that is available in such files. Most diverse of the tools is needed in order to carry out scraping in a document that is created in this format. You'd find two main forms of PDF files where one is built from a text file and the other firm is where it is built from some image. There is software brought by Adobe itself which can capably do scraping in text based files. For files that are image-based, there is a need to make use of special application for the task.

OCR program is one primary tool to be used for such a matter. Optical Recognition Program is capable in scanning documents for small picture that can be segregated into letters. The pictures are compared with actual letters and given they match well; the letters get copied into one file. These programs are able to do scraping in an apt way in image-based files pretty much aptly however it cannot be said that they are perfect. Once the procedure is done you could search through data so as to find those areas and parts which you had been looking for. More often than not it is difficult to find a utility that can obtain exact data that is needed without proper customization. But if thoroughly checked, you cou

Source: http://ezinearticles.com/?Scraping-in-PDF-Files---Improving-Accessibility&id=6108439

Saturday, 3 December 2016

Web Data Extraction Services and Data Collection Form Website Pages

Web Data Extraction Services and Data Collection Form Website Pages

For any business market research and surveys plays crucial role in strategic decision making. Web scrapping and data extraction techniques help you find relevant information and data for your business or personal use. Most of the time professionals manually copy-paste data from web pages or download a whole website resulting in waste of time and efforts.

Instead, consider using web scraping techniques that crawls through thousands of website pages to extract specific information and simultaneously save this information into a database, CSV file, XML file or any other custom format for future reference.

Examples of web data extraction process include:
• Spider a government portal, extracting names of citizens for a survey
• Crawl competitor websites for product pricing and feature data
• Use web scraping to download images from a stock photography site for website design

Automated Data Collection
Web scraping also allows you to monitor website data changes over stipulated period and collect these data on a scheduled basis automatically. Automated data collection helps you discover market trends, determine user behavior and predict how data will change in near future.

Examples of automated data collection include:
• Monitor price information for select stocks on hourly basis
• Collect mortgage rates from various financial firms on daily basis
• Check whether reports on constant basis as and when required

Using web data extraction services you can mine any data related to your business objective, download them into a spreadsheet so that they can be analyzed and compared with ease.

In this way you get accurate and quicker results saving hundreds of man-hours and money!

With web data extraction services you can easily fetch product pricing information, sales leads, mailing database, competitors data, profile data and many more on a consistent basis.

Source:http://ezinearticles.com/?Web-Data-Extraction-Services-and-Data-Collection-Form-Website-Pages&id=4860417

Friday, 18 November 2016

How Xpath Plays Vital Role In Web Scraping Part 2

How Xpath Plays Vital Role In Web Scraping Part 2

Here is a piece of content on  Xpaths which is the follow up of How Xpath Plays Vital Role In Web Scraping

Let’s dive into a real-world example of scraping amazon website for getting information about deals of the day. Deals of the day in amazon can be found at this URL. So navigate to the amazon (deals of the day) in Firefox and find the XPath selectors. Right click on the deal you like and select “Inspect Element with Firebug”:

If you observe the image below keenly, there you can find the source of the image(deal) and the name of the deal in src, alt attribute’s respectively.

So now let’s write a generic XPath which gathers the name and image source of the product(deal).

  //img[@role=”img”]/@src  ## for image source
  //img[@role=”img”]/@alt   ## for product name

In this post, I’ll show you some tips we found valuable when using XPath in the trenches.

If you have an interest in Python and web scraping, you may have already played with the nice requests library to get the content of pages from the Web. Maybe you have toyed around using Scrapy selector or lxml to make the content extraction easier. Well, now I’m going to show you some tips I found valuable when using XPath in the trenches and we are going to use both lxml and Scrapy selector for HTML parsing.

Avoid using expressions which contains(.//text(), ‘search text’) in your XPath conditions. Use contains(., ‘search text’) instead.

Here is why: the expression .//text() yields a collection of text elements — a node-set(collection of nodes).and when a node-set is converted to a string, which happens when it is passed as argument to a string function like contains() or starts-with(), results in the text for the first element only.

from scrapy import Selector
html_code = “””<a href=”#”>Click here to go to the <strong>Next Page</strong></a>”””
sel = Selector(text=html_code)
xp = lambda x: sel.xpath(x).extract()           # Let’s type this only once
print xp(‘//a//text()’)                                       # Take a peek at the node-set
[u’Click here to go to the ‘, u’Next Page’]   # output of above command
print xp(‘string(//a//text())’)                           # convert it to a string
  [u’Click here to go to the ‘]                           # output of the above command

Let’s do the above one by using lxml then you can implement XPath by both lxml or Scrapy selector as XPath expression is same for both methods.

lxml code:

from lxml import html
html_code = “””<a href=”#”>Click here to go to the <strong>Next Page</strong></a>””” # Parse the text into a tree
parsed_body = html.fromstring(html_code)  # Perform xpaths on the tree
print parsed_body(‘//a//text()’)                      # take a peek at the node-set
[u’Click here to go to the ‘, u’Next Page’]   # output
print parsed_body(‘string(//a//text())’)              # convert it to a string
[u’Click here to go to the ‘]                    # output

A node converted to a string, however, puts together the text of itself plus of all its descendants:

>>> xp(‘//a[1]’)  # selects the first a node
[u'<a href=”#”>Click here to go to the <strong>Next Page</strong></a>’]

>>> xp(‘string(//a[1])’)  # converts it to string
[u’Click here to go to the Next Page’]

Beware of the difference between //node[1] and (//node)[1]//node[1] selects all the nodes occurring first under their respective parents and (//node)[1] selects all the nodes in the document, and then gets only the first of them.

from scrapy import Selector

html_code = “””<ul class=”list”>
<li>1</li>
<li>2</li>
<li>3</li>
</ul>

<ul class=”list”>
<li>4</li>
<li>5</li>
<li>6</li>
</ul>”””

sel = Selector(text=html_code)
xp = lambda x: sel.xpath(x).extract()

xp(“//li[1]”) # get all first LI elements under whatever it is its parent

[u'<li>1</li>’, u'<li>4</li>’]

xp(“(//li)[1]”) # get the first LI element in the whole document

[u'<li>1</li>’]

xp(“//ul/li[1]”)  # get all first LI elements under an UL parent

[u'<li>1</li>’, u'<li>4</li>’]

xp(“(//ul/li)[1]”) # get the first LI element under an UL parent in the document

[u'<li>1</li>’]

Also,

//a[starts-with(@href, ‘#’)][1] gets a collection of the local anchors that occur first under their respective parents and (//a[starts-with(@href, ‘#’)])[1] gets the first local anchor in the document.

When selecting by class, be as specific as necessary.

If you want to select elements by a CSS class, the XPath way to do the same job is the rather verbose:

*[contains(concat(‘ ‘, normalize-space(@class), ‘ ‘), ‘ someclass ‘)]

Let’s cook up some examples:

>>> sel = Selector(text='<p class=”content-author”>Someone</p><p class=”content text-wrap”>Some content</p>’)

>>> xp = lambda x: sel.xpath(x).extract()

BAD: because there are multiple classes in the attribute

>>> xp(“//*[@class=’content’]”)

[]

BAD: gets more content than we need

 >>> xp(“//*[contains(@class,’content’)]”)

     [u'<p class=”content-author”>Someone</p>’,
     u'<p class=”content text-wrap”>Some content</p>’]

GOOD:

>>> xp(“//*[contains(concat(‘ ‘, normalize-space(@class), ‘ ‘), ‘ content ‘)]”)
[u'<p class=”content text-wrap”>Some content</p>’]

And many times, you can just use a CSS selector instead, and even combine the two of them if needed:

ALSO GOOD:

>>> sel.css(“.content”).extract()
[u'<p class=”content text-wrap”>Some content</p>’]

>>> sel.css(‘.content’).xpath(‘@class’).extract()
[u’content text-wrap’]

Learn to use all the different axes.

It is handy to know how to use the axes, you can follow through these examples.

In particular, you should note that following and following-sibling are not the same thing, this is a common source of confusion. The same goes for preceding and preceding-sibling, and also ancestor and parent.

Useful trick to get text content

Here is another XPath trick that you may use to get the interesting text contents: 

//*[not(self::script or self::style)]/text()[normalize-space(.)]

This excludes the content from the script and style tags and also skip whitespace-only text nodes.

Tools & Libraries Used:

Firefox
Firefox inspect element with firebug
Scrapy : 1.1.1
Python : 2.7.12
Requests : 2.11.0

 Have questions? Comment below. Please share if you found this helpful.

Source: http://blog.datahut.co/how-xpath-plays-vital-role-in-web-scraping-part-2/

Thursday, 3 November 2016

Data Mining Process - Why Outsource Data Mining Service?

Data Mining Process - Why Outsource Data Mining Service?

Overview of Data Mining and Process:

Data mining is one of the unique techniques for investigating information to extract certain data patterns and decide to outcome of existing requirements. Data mining is widely use in client research, services analysis, market research and so on. It is totally based on mathematical algorithm and analytical skills to drive the desired results from the huge database collection.

Information mining is mostly used by financial analyzer, business and professional organization and also there are many growing area of business that are get maximum advantages of data extract with use of data warehouses in their small to large level of businesses.

Most of functionalities which are used in information collecting process define as under:

* Retrieving Data

* Analyzing Data

* Extracting Data

* Transforming Data

* Loading Data

* Managing Databases

Most of small, medium and large levels of businesses are collect huge amount of data or information for analysis and research to develop business. Such kind of large amount will help and makes it much important whenever information or data required.

Why Outsource Data Online Mining Service?

Outsourcing advantages of data mining services:
o Almost save 60% operating cost
o High quality analysis processes ensuring accuracy levels of almost 99.98%
o Guaranteed risk free outsourcing experience ensured by inflexible information security policies and practices
o Get your project done within a quick turnaround time
o You can measure highly skilled and expertise by taking benefits of Free Trial Program.
o Get the gathered information presented in a simple and easy to access format

Thus, data or information mining is very important part of the web research services and it is most useful process. By outsource data extraction and mining service; you can concentrate on your co relative business and growing fast as you desire.

Outsourcing web research is trusted and well known Internet Market research organization having years of experience in BPO (business process outsourcing) field.

If you want to more information about data mining services and related web research services, then contact us.

Source: http://ezinearticles.com/?Data-Mining-Process---Why-Outsource-Data-Mining-Service?&id=3789102

Tuesday, 18 October 2016

Web Scraping with Python: A Beginner’s Guide

Web Scraping with Python: A Beginner’s Guide

In the Big Data world, Web Scraping or Data extraction services are the primary requisites for Big Data Analytics. Pulling up data from the web has become almost inevitable for companies to stay in business. Next question that comes up is how to go about web scraping as a beginner.

Data can be extracted or scraped from a web source using a number of methods. Popular websites like Google, Facebook, or Twitter offer APIs to view and extract the available data in a structured manner.  This prevents the use of other methods that may not be preferred by the API provider. However, the demand to scrape a website arises when the information is not readily offered by the website. Python, an open source programming language is often used for Web Scraping due to its simple and rich ecosystem. It contains a library called “BeautifulSoup” which carries on this task. Let’s take a deeper look into web scraping using python.

Setting up a Python Environment:

To carry out web scraping using Python, you will first have to install the Python Environment, which enables to run code written in the python language. The libraries perform data scraping;

Beautiful Soup is a convenient-to-use python library. It is one of the finest tools for extracting information from a webpage. Professionals can scrape information from web pages in the form of tables, lists, or paragraphs. Urllib2 is another library that can be used in combination with the BeautifulSoup library for fetching the web pages. Filters can be added to extract specific information from web pages. Urllib2 is a Python module that can fetch URLs.

For MAC OSX :

To install Python libraries on MAC OSX, users need to open a terminal win and type in the following commands, single command at a time:

sudoeasy_install pip

pip install BeautifulSoup4

pip install lxml

For Windows 7 & 8 users:

Windows 7 & 8 users need to ensure that the python environment gets installed first. Once, the environment is installed, open the command prompt and find the way to root C:/ directory and type in the following commands:

easy_install BeautifulSoup4

easy_installlxml

Once the libraries are installed, it is time to write data scraping code.

Running Python:

Data scraping must be done for a distinct objective such as to scrape current stock of a retail store. First, a web browser is required to navigate the website that contains this data. After identifying the table, right click anywhere on it and then select inspect element from the dropdown menu list. This will cause a window to pop-up on the bottom or side of your screen displaying the website’s html code. The rankings appear in a table. You might need to scan through the HTML data until you find the line of code that highlights the table on the webpage.

Python offers some other alternatives for HTML scraping apart from BeautifulSoup. They include:

    Scrapy
    Scrapemark
    Mechanize

 Web scraping converts unstructured data from HTML code into structured form such as tabular data in an Excel worksheet. Web scraping can be done in many ways ranging from the use of Google Docs to programming languages. For people who do not have any programming knowledge or technical competencies, it is possible to acquire web data by using web scraping services that provide ready to use data from websites of your preference.

HTML Tags:

To perform web scraping, users must have a sound knowledge of HTML tags. It might help a lot to know that HTML links are defined using anchor tag i.e. <a> tag, “<a href=“http://…”>The link needs to be here </a>”. An HTML list comprises <ul> (unordered) and <ol> (ordered) list. The item of list starts with <li>.

HTML tables are defined with<Table>, row as <tr> and columns are divided into data as <td>;

    <!DOCTYPE html> : A HTML document starts with a document type declaration
    The main part of the HTML document in unformatted, plain text is defined by <body> and </body> tags
    The headings in HTML are defined using the heading tags from <h1> to <h5>
    Paragraphs are defined with the <p> tag in HTML
    An entire HTML document is contained between <html> and </html>

Using BeautifulSoup in Scraping:

While scraping a webpage using BeautifulSoup, the main concern is to identify the final objective. For instance, if you would like to extract a list from webpage, a step wise approach is required:

    First and foremost step is to import the required libraries:

 #import the library used to query a website

import urllib2

#specify the url wiki = “https://”

#Query the website and return the html to the variable ‘page’

page = urllib2.urlopen(wiki)

#import the Beautiful soup functions to parse the data returned from the website

from bs4 import BeautifulSoup

#Parse the html in the ‘page’ variable, and store it in Beautiful Soup format

soup = BeautifulSoup(page)

    Use function “prettify” to visualize nested structure of HTML page
    Working with Soup tags:

Soup<tag> is used for returning content between opening and closing tag including tag.

    In[30]:soup.title

 Out[30]:<title>List of Presidents in India till 2010 – Wikipedia, the free encyclopedia</title>

    soup.<tag>.string: Return string within given tag
    In [38]:soup.title.string
    Out[38]:u ‘List of Presidents in India and Brazil till 2010 in India – Wikipedia, the free encyclopedia’
    Find all the links within page’s <a> tags: Tag a link using tag “<a>”. So, go with option soup.a and it should return the links available in the web page. Let’s do it.
    In [40]:soup.a

Out[40]:<a id=”top”></a>

    Find the right table:

As a table to pull up information about Presidents in India and Brazil till 2010 is being searched for, identifying the right table first is important. Here’s a command to scrape information enclosed in all table tags.

all_tables= soup.find_all(‘table’)

Identify the right table by using attribute “class” of table needs to filter the right table. Thereafter, inspect the class name by right clicking on the required table of web page as follows:

    Inspect element
    Copy the class name or find the class name of right table from the last command’s output.

 right_table=soup.find(‘table’, class_=’wikitable sortable plainrowheaders’)

right_table

That’s how we can identify the right table.

    Extract the information to DataFrame: There is a need to iterate through each row (tr) and then assign each element of tr (td) to a variable and add it to a list. Let’s analyse the Table’s HTML structure of the table. (extract information for table heading <th>)

To access value of each element, there is a need to use “find(text=True)” option with each element.  Finally, there is data in dataframe.

There are various other ways to scrape data using “BeautifulSoup” that reduce manual efforts to collect data from web pages. Code written in BeautifulSoup is considered to be more robust than the regular expressions. The web scraping method we discussed use “BeautifulSoup” and “urllib2” libraries in Python. That was a brief beginner’s guide to start using Python for web scraping.

Source: https://www.promptcloud.com/blog/web-scraping-python-guide

Monday, 3 October 2016

PDF Scraping: Making Modern File Formats More Accessible

Data scraping is the process of automatically sorting through information contained on the internet inside html, PDF or other documents and collecting relevant information to into databases and spreadsheets for later retrieval. On most websites, the text is easily and accessibly written in the source code but an increasing number of businesses are using Adobe PDF format (Portable Document Format: A format which can be viewed by the free Adobe Acrobat software on almost any operating system. See below for a link.). The advantage of PDF format is that the document looks exactly the same no matter which computer you view it from making it ideal for business forms, specification sheets, etc.; the disadvantage is that the text is converted into an image from which you often cannot easily copy and paste. PDF Scraping is the process of data scraping information contained in PDF files. To PDF scrape a PDF document, you must employ a more diverse set of tools.

There are two main types of PDF files: those built from a text file and those built from an image (likely scanned in). Adobe's own software is capable of PDF scraping from text-based PDF files but special tools are needed for PDF scraping text from image-based PDF files. The primary tool for PDF scraping is the OCR program. OCR, or Optical Character Recognition, programs scan a document for small pictures that they can separate into letters. These pictures are then compared to actual letters and if matches are found, the letters are copied into a file. OCR programs can perform PDF scraping of image-based PDF files quite accurately but they are not perfect.

Once the OCR program or Adobe program has finished PDF scraping a document, you can search through the data to find the parts you are most interested in. This information can then be stored into your favorite database or spreadsheet program. Some PDF scraping programs can sort the data into databases and/or spreadsheets automatically making your job that much easier.

Quite often you will not find a PDF scraping program that will obtain exactly the data you want without customization. Surprisingly a search on Google only turned up one business, (the amusingly named ScrapeGoat.com that will create a customized PDF scraping utility for your project. A handful of off the shelf utilities claim to be customizable, but seem to require a bit of programming knowledge and time commitment to use effectively. Obtaining the data yourself with one of these tools may be possible but will likely prove quite tedious and time consuming. It may be advisable to contract a company that specializes in PDF scraping to do it for you quickly and professionally.

Let's explore some real world examples of the uses of PDF scraping technology. A group at Cornell University wanted to improve a database of technical documents in PDF format by taking the old PDF file where the links and references were just images of text and changing the links and references into working clickable links thus making the database easy to navigate and cross-reference. They employed a PDF scraping utility to deconstruct the PDF files and figure out where the links were. They then could create a simple script to re-create the PDF files with working links replacing the old text image.

A computer hardware vendor wanted to display specifications data for his hardware on his website. He hired a company to perform PDF scraping of the hardware documentation on the manufacturers' website and save the PDF scraped data into a database he could use to update his webpage automatically.

PDF Scraping is just collecting information that is available on the public internet. PDF Scraping does not violate copyright laws.

PDF Scraping is a great new technology that can significantly reduce your workload if it involves retrieving information from PDF files. Applications exist that can help you with smaller, easier PDF Scraping projects but companies exist that will create custom applications for larger or more intricate PDF Scraping jobs.

Source: http://ezinearticles.com/?PDF-Scraping:-Making-Modern-File-Formats-More-Accessible&id=193321

Wednesday, 28 September 2016

How to do data scraping from PDF files using PHP?

How to do data scraping from PDF files using PHP?

Situations arise when you want to scrap data from PDF or want to search PDF files for matching text. Suppose you have website where users uploads PDF files and you want to give search functionality to user which searches all uploaded PDF file content for matching text and show all PDFs that contains matching search keywords.

Or you might have all London real estate properties details in PDF report file and you want to quickly grab scrape data from PDF reports then you might need PDF scraping library.

To integrate such functionality to web application is not similar to normal search functionality that we do with database search.

Here is the straight solution for this problem. This involves PDF Data Scraping to plain text and match search terms. I have written this post for the people who want to do PDF data scraping or want to make their PDF files to be Searchable.

We are going to use class named class.pdf2text.php which converts PDF text to into ASCII text, so the class is known for PDF extraction. This PHP class ignores anything in PDF that is not a text.

Let’s see very basic example (Taken from author’s file):

<?php

include "class.pdf2text.php";

$a = new PDF2Text();
$a->setFilename('web-scraping-service.pdf'); //grab the pdf file reside in folder where PHP files resides.

$a->decodePDF();//converts PDF content to text
echo $a->output();

?>

“Web Scraping is a technique using which programmer can automate the copy paste manual work and save the time. This is PDF w eb scraping using PHP. We at Web Data Scraping offer Web Scraping and Data Scraping Service. Vist our website www.webdata-scraping.com”

For more complex extraction you can apply regular expression on the text you get and can parse text that you want from PDF. But keep in mind this has limitation and do not work with all types of PDF extraction.

But the wonderful use of this class is to make utility that allow user to search inside PDF when they search on web search bar. Last but not least, You can also find many PDF scraping software available in market that can do complex scraping from PDF files.

Source: http://webdata-scraping.com/data-scraping-pdf-files-using-php/

Monday, 19 September 2016

Web Scraping – A trending technique in data science!!!

Web Scraping – A trending technique in data science!!!

Web scraping as a market segment is trending to be an emerging technique in data science to become an integral part of many businesses – sometimes whole companies are formed based on web scraping. Web scraping and extraction of relevant data gives businesses an insight into market trends, competition, potential customers, business performance etc.  Now question is that “what is actually web scraping and where is it used???” Let us explore web scraping, web data extraction, web mining/data mining or screen scraping in details.

What is Web Scraping?

Web Data Scraping is a great technique of extracting unstructured data from the websites and transforming that data into structured data that can be stored and analyzed in a database. Web Scraping is also known as web data extraction, web data scraping, web harvesting or screen scraping.

What you can see on the web that can be extracted. Extracting targeted information from websites assists you to take effective decisions in your business.

Web scraping is a form of data mining. The overall goal of the web scraping process is to extract information from a websites and transform it into an understandable structure like spreadsheets, database or csv. Data like item pricing, stock pricing, different reports, market pricing, product details, business leads can be gathered via web scraping efforts.

There are countless uses and potential scenarios, either business oriented or non-profit. Public institutions, companies and organizations, entrepreneurs, professionals etc. generate an enormous amount of information/data every day.

Uses of Web Scraping:

The following are some of the uses of web scraping:

  •     Collect data from real estate listing
  •     Collecting retailer sites data on daily basis
  •     Extracting offers and discounts from a website.
  •     Scraping job posting.
  •     Price monitoring with competitors.
  •     Gathering leads from online business directories – directory scraping
  •     Keywords research
  •     Gathering targeted emails for email marketing – email scraping
  •     And many more.

There are various techniques used for data gathering as listed below:

  •     Human copy-and-paste – takes lot of time to finish when data is huge
  •     Programming the Custom Web Scraper as per the needs.
  •     Using Web Scraping Softwares available in market.

Are you in search of web data scraping expert or specialist. Then you are at right place. We are the team of web scraping experts who could easily extract data from website and further structure the unstructured useful data to uncover patterns, and help businesses for decision making that helps in increasing sales, cover a wide customer base and ultimately it leads to business towards growth and success.

We have got expertise in all the web scraping techniques, scraping data from ajax enabled complex websites, bypassing CAPTCHAs, forming anonymous http request etc in providing web scraping services.

Source: http://webdata-scraping.com/web-scraping-trending-technique-in-data-science/

Tuesday, 6 September 2016

Benefits of Ruby over Python & R for Web Scraping

Benefits of Ruby over Python & R for Web Scraping

In this data driven world, you need to be constantly vigilant, as information and key data for an organization keeps changing all the while. If you get the right data at the right time in an efficient manner, you can stay ahead of competition. Hence, web scraping is an essential way of getting the right data. This data is crucial for many organizations, and scraping technique will help them keep an eye on the data and get the information that will benefit them further.

Web scraping involves both crawling the web for data and extracting the data from the page. There are several languages which programmers prefer for web scraping, the top ones are Ruby, Python & R. Each language has its own pros and cons over the other, but if you want the best results and a smooth flow, Ruby is what you should be looking for.

Ruby is very good at production deployments and using Ruby, Redis & Chef have proven to be a great combination. String manipulation in Ruby is very easy because it is based on Perl syntax. Also, Ruby is great for analyzing web pages using  one of the very powerful gems called Nokogiri. Nokogiri is much easier to use as compared to other packages and libraries used by R and Python respectively. Nokogiri can deal with broken HTML / HTML fragments easily. Ruby also has many extensions, such as Sanitize and Loofah, that can help clean up broken HTML.

Python programmers widely use a library called Beautiful Soup for pulling data out of HTML & XML files. It works with your favorite parser to provide idiomatic ways of navigating, searching, and modifying the parse tree. It commonly saves programmers hours or days of work. R programmers have a new package called rvest that makes it easy to scrape data from html web pages, by libraries like beautiful soup. It is designed to work with magrittr so that you can express complex operations as elegant pipelines composed of simple, easily understood pieces.

To help you understand it more effectively, below is a comprehensive infographic for the same.

Ruby is far ahead of Python & R for cloud development and deployments.  The Ruby Bundler system is just great for managing and deploying packages from Github. Using Chef, you can start up and tear down nodes on EC2, at will, and monitor for failures,  scale up or down, reset your IP addresses, etc. Ruby also has great testing frameworks like Fakeweb and Capybara, making it almost trivial to build a great suite of unit tests and to include advanced features, like crawling  and scraping using webkit / selenium. 

The only disadvantage to Ruby is lack of machine learning and NLP toolkits, making it much harder to emulate the capacity of a tool like Pattern.  It can still be done, however, since most of the heavy lifting can be done asynchronously using Unix tools like liblinear or vowpal wabbit.

Conclusion

Each language has its plus point and you can pick the one which you are most comfortable with. But if you are looking for smooth web scraping experience, then Ruby is the best option. That has been our choice too for years at PromptCloud for the best web scraping results. If you have any further questions about this, then feel free to get in touch with us.

Source: https://www.promptcloud.com/blog/benefits-of-ruby-for-web-scraping

Monday, 29 August 2016

How Web Scraping can Help you Detect Weak spots in your Business

How Web Scraping can Help you Detect Weak spots in your Business

Business intelligence is not a new term. Businesses have always been employing experts for analysing the progress, market and industry trends to keep their growth graph going up. Now that we have big data and the tool to gather this data – Web scraping, business intelligence has become even more fruitful. In fact, business intelligence has become a necessary thing to survive now that the competition is fierce in every industry. This is the reason why most enterprises depend on web scraping solutions to gather the data relevant to their businesses. This data is highly insightful and dependable enough to make critical business decisions. Business intelligence from web scraping is definitely a game changer for companies as it can supply relevant and actionable data with minimal effort.

Most businesses have weak spots that are being overlooked or hidden from the plain sight. These weak spots, if left unnoticed can gradually result in the downfall of your company. Here is how you can use data acquired through web scraping to detect weak spots in your business and strengthen them.

Competitor analysis

Many a times, you can find out the flaws in your business by keeping a close watch on your competitors. Competitor analysis is something that we owe to web scraping as the level of competitive intelligence that you can derive from web scraping has never been achievable in the past. With crawling forums and social media sites where your target audience is, you can easily find out if your competitor is leveraging something you have overlooked. Competitor analysis is all about staying updated to each and every action by your competitors, so that you can always be prepared for their next strategic move. If your competitors are doing better than you, this data can be used to make a comparison between your business and theirs which would give you insights on where you lack.

Brand monitoring on Social media

With social media platforms acting like platforms where businesses and customers can interact with each other, the data available on these sites are increasingly becoming relevant to businesses. Any issues in your business operations will also reflect on your customer sentiments. Social media is a goldmine of sentiment data that can help you detect issues within your company. By analysing the posts that mention your brand or product on social media sites, you can identify what department of your company is functioning well and what isn’t.

For example, if you are an Ecommerce portal and many users are complaining about delivery issues from your company on social media, you might want to switch to a better logistics partner who does a better job. The ability to identify such issues at the earliest is extremely important and that’s where web scraping becomes a life saver. With social media scraping, monitoring your brand on social media is easy like never before and the chances of minor issues escalating to bigger ones is almost non-existent. Brand monitoring is extremely crucial if you are a business operating in the online space. Social media scraping solutions are provided by many leading web scraping companies, which totally eliminates the technical complications associated with the process for you.

Finding untapped opportunities

There are always new and untapped markets and opportunities that are relevant to your business. Finding them is not going to be an easy task with manual and outdated methods of research. Web scraping can fill this gap and help you find opportunities that your company can make use of to leverage your reach and progress. Sometimes, targeting the right audience makes all the difference that you’ve been trying to make. By using web crawling to find mentions of your relevant keywords on the web, you can easily stay updated on your niche and fill in to any new untapped markets. Web crawling for keywords is better explained in our previous blog.

Bottom line

It is not a cakewalk to stay ahead in the competition considering how competitive every industry has become in this digital age. It is crucial to find the weak spots and untapped opportunities of your business before someone else does. Of course, you can always use some help from the technology when you need it. Web scraping is clearly the best way to find and gather data that would help you figure these out. With web crawling solutions that can completely take care of this niche process, nothing is stopping you from using the data and insights that the web has in stock for your business.

Source: https://www.promptcloud.com/blog/web-scraping-detect-weak-spots-business

How Web Scraping can Help you Detect Weak spots in your Business

How Web Scraping can Help you Detect Weak spots in your Business

Business intelligence is not a new term. Businesses have always been employing experts for analysing the progress, market and industry trends to keep their growth graph going up. Now that we have big data and the tool to gather this data – Web scraping, business intelligence has become even more fruitful. In fact, business intelligence has become a necessary thing to survive now that the competition is fierce in every industry. This is the reason why most enterprises depend on web scraping solutions to gather the data relevant to their businesses. This data is highly insightful and dependable enough to make critical business decisions. Business intelligence from web scraping is definitely a game changer for companies as it can supply relevant and actionable data with minimal effort.

Most businesses have weak spots that are being overlooked or hidden from the plain sight. These weak spots, if left unnoticed can gradually result in the downfall of your company. Here is how you can use data acquired through web scraping to detect weak spots in your business and strengthen them.

Competitor analysis

Many a times, you can find out the flaws in your business by keeping a close watch on your competitors. Competitor analysis is something that we owe to web scraping as the level of competitive intelligence that you can derive from web scraping has never been achievable in the past. With crawling forums and social media sites where your target audience is, you can easily find out if your competitor is leveraging something you have overlooked. Competitor analysis is all about staying updated to each and every action by your competitors, so that you can always be prepared for their next strategic move. If your competitors are doing better than you, this data can be used to make a comparison between your business and theirs which would give you insights on where you lack.

Brand monitoring on Social media

With social media platforms acting like platforms where businesses and customers can interact with each other, the data available on these sites are increasingly becoming relevant to businesses. Any issues in your business operations will also reflect on your customer sentiments. Social media is a goldmine of sentiment data that can help you detect issues within your company. By analysing the posts that mention your brand or product on social media sites, you can identify what department of your company is functioning well and what isn’t.

For example, if you are an Ecommerce portal and many users are complaining about delivery issues from your company on social media, you might want to switch to a better logistics partner who does a better job. The ability to identify such issues at the earliest is extremely important and that’s where web scraping becomes a life saver. With social media scraping, monitoring your brand on social media is easy like never before and the chances of minor issues escalating to bigger ones is almost non-existent. Brand monitoring is extremely crucial if you are a business operating in the online space. Social media scraping solutions are provided by many leading web scraping companies, which totally eliminates the technical complications associated with the process for you.

Finding untapped opportunities

There are always new and untapped markets and opportunities that are relevant to your business. Finding them is not going to be an easy task with manual and outdated methods of research. Web scraping can fill this gap and help you find opportunities that your company can make use of to leverage your reach and progress. Sometimes, targeting the right audience makes all the difference that you’ve been trying to make. By using web crawling to find mentions of your relevant keywords on the web, you can easily stay updated on your niche and fill in to any new untapped markets. Web crawling for keywords is better explained in our previous blog.

Bottom line

It is not a cakewalk to stay ahead in the competition considering how competitive every industry has become in this digital age. It is crucial to find the weak spots and untapped opportunities of your business before someone else does. Of course, you can always use some help from the technology when you need it. Web scraping is clearly the best way to find and gather data that would help you figure these out. With web crawling solutions that can completely take care of this niche process, nothing is stopping you from using the data and insights that the web has in stock for your business.

Source: https://www.promptcloud.com/blog/web-scraping-detect-weak-spots-business

Wednesday, 17 August 2016

Business Intelligence & Data Warehousing in a Business Perspective

Business Intelligence & Data Warehousing in a Business Perspective

Business Intelligence


Business Intelligence has become a very important activity in the business arena irrespective of the domain due to the fact that managers need to analyze comprehensively in order to face the challenges.

Data sourcing, data analysing, extracting the correct information for a given criteria, assessing the risks and finally supporting the decision making process are the main components of BI.

In a business perspective, core stakeholders need to be well aware of all the above stages and be crystal clear on expectations. The person, who is being assigned with the role of Business Analyst (BA) for the BI initiative either from the BI solution providers' side or the company itself, needs to take the full responsibility on assuring that all the above steps are correctly being carried out, in a way that it would ultimately give the business the expected leverage. The management, who will be the users of the BI solution, and the business stakeholders, need to communicate with the BA correctly and elaborately on their expectations and help him throughout the process.

Data sourcing is an initial yet crucial step that would have a direct impact on the system where extracting information from multiple sources of data has to be carried out. The data may be on text documents such as memos, reports, email messages, and it may be on the formats such as photographs, images, sounds, and they can be on more computer oriented sources like databases, formatted tables, web pages and URL lists. The key to data sourcing is to obtain the information in electronic form. Therefore, typically scanners, digital cameras, database queries, web searches, computer file access etc, would play significant roles. In a business perspective, emphasis should be placed on the identification of the correct relevant data sources, the granularity of the data to be extracted, possibility of data being extracted from identified sources and the confirmation that only correct and accurate data is extracted and passed on to the data analysis stage of the BI process.

Business oriented stake holders guided by the BA need to put in lot of thought during the analyzing stage as well, which is the second phase. Synthesizing useful knowledge from collections of data should be done in an analytical way using the in-depth business knowledge whilst estimating current trends, integrating and summarizing disparate information, validating models of understanding, and predicting missing information or future trends. This process of data analysis is also called data mining or knowledge discovery. Probability theory, statistical analysis methods, operational research and artificial intelligence are the tools to be used within this stage. It is not expected that business oriented stake holders (including the BA) are experts of all the above theoretical concepts and application methodologies, but they need to be able to guide the relevant resources in order to achieve the ultimate expectations of BI, which they know best.

Identifying relevant criteria, conditions and parameters of report generation is solely based on business requirements, which need to be well communicated by the users and correctly captured by the BA. Ultimately, correct decision support will be facilitated through the BI initiative and it aims to provide warnings on important events, such as takeovers, market changes, and poor staff performance, so that preventative steps could be taken. It seeks to help analyze and make better business decisions, to improve sales or customer satisfaction or staff morale. It presents the information that manager's need, as and when they need it.

In a business sense, BI should go several steps forward bypassing the mere conventional reporting, which should explain "what has happened?" through baseline metrics. The value addition will be higher if it can produce descriptive metrics, which will explain "why has it happened?" and the value added to the business will be much higher if predictive metrics could be provided to explain "what will happen?" Therefore, when providing a BI solution, it is important to think in these additional value adding lines.

Data warehousing

In the context of BI, data warehousing (DW) is also a critical resource to be implemented to maximize the effectiveness of the BI process. BI and DW are two terminologies that go in line. It has come to a level where a true BI system is ineffective without a powerful DW, in order to understand the reality behind this statement, it's important to have an insight in to what DW really is.

A data warehouse is one large data store for the business in concern which has integrated, time variant, non volatile collection of data in support of management's decision making process. It will mainly have transactional data which would facilitate effective querying, analyzing and report generation, which in turn would give the management the required level of information for the decision making.

The reasons to have BI together with DW

At this point, it should be made clear why a BI tool is more effective with a powerful DW. To query, analyze and generate worthy reports, the systems should have information available. Importantly, transactional information such as sales data, human resources data etc. are available normally in different applications of the enterprise, which would obviously be physically held in different databases. Therefore, data is not at one particular place, hence making it very difficult to generate intelligent information.

The level of reports expected today, are not merely independent for each department, but managers today want to analyze data and relationships across the enterprise so that their BI process is effective. Therefore, having data coming from all the sources to one location in the form of a data warehouse is crucial for the success of the BI initiative. In a business viewpoint, this message should be passed and sold to the managements of enterprises so that they understand the value of the investment. Once invested, its gains could be achieved over several years, in turn marking a high ROI.

Investment costs for a DW in the short term may look quite high, but it's important to re-iterate that the gains are much higher and it will span over many years to come. It also reduces future development cost since with the DW any requested report or view could be easily facilitated. However, it is important to find the right business sponsor for the project. He or she needs to communicate regularly with executives to ensure that they understand the value of what's being built. Business sponsors need to be decisive, take an enterprise-wide perspective and have the authority to enforce their decisions.

Process

Implementation of a DW itself overlaps with some phases of the above explained BI process and it's important to note that in a process standpoint, DW falls in to the first few phases of the entire BI initiative. Gaining highly valuable information out of DW is the latter part of the BI process. This can be done in many ways. DW can be used as the data repository of application servers that run decision support systems, management Information Systems, Expert systems etc., through them, intelligent information could be achieved.

But one of the latest strategies is to build cubes out of the DW and allow users to analyze data in multiple dimensions, and also provide with powerful analytical supporting such as drill down information in to granular levels. Cube is a concept that is different to the traditional relational 2-dimensional tabular view, and it has multiple dimensions, allowing a manager to analyze data based on multiple factors, and not just two factors. On the other hand, it allows the user to select whatever the dimension he wish to choose for analyzing purposes and not be limited by one fixed view of data, which is called as slice & dice in DW terminology.

BI for a serious enterprise is not just a phase of a computerization process, but it is one of the major strategies behind the entire organizational drivers. Therefore management should sit down and build up a BI strategy for the company and identify the information they require in each business direction within the enterprise. Given this, BA needs to analyze the organizational data sources in order to build up the most effective DW which would help the strategized BI process.

High level Ideas on Implementation

At the heart of the data warehousing process is the extract, transform, and load (ETL) process. Implementation of this merely is a technical concern but it's a business concern to make sure it is designed in such a way that it ultimately helps to satisfy the business requirements. This process is responsible for connecting to and extracting data from one or more transactional systems (source systems), transforming it according to the business rules defined through the business objectives, and loading it into the all important data model. It is at this point where data quality should be gained. Of the many responsibilities of the data warehouse, the ETL process represents a significant portion of all the moving parts of the warehousing process.

Creation of a powerful DW depends on the correctness of data modeling, which is the responsibility of the database architect of the project, but BA needs to play a pivotal role providing him with correct data sources, data requirements and most importantly business dimensions. Business Dimensional modeling is a special method used for DW projects and this normally should be carried out by the BA and from there onwards technical experts should take up the work. Dimensions are perspectives specific to a business that could be used for analysis purposes. As an example, for a sales database, the dimensions could include Product, Time, Store, etc. Obviously these dimensions differ from one business to another and hence for each DW initiative those dimensions should be correctly identified and that could be very well done by a person who has experience in the DW domain and understands the business as well, making it apparent that DW BA is the person responsible.

Each of the identified dimensions would be turned in to a dimension table at the implementation phase, and the objective of the above explained ETL process is to fill up these dimension tables, which in turn will be taken to the level of the DW after performing some more database activities based on a strong underlying data model. Implementation details are not important for a business stakeholder but being aware of high level process to this level is important so that they are also on the same pitch as that of the developers and can confirm that developers are actually doing what they are supposed to do and would ultimately deliver what they are supposed to deliver.

Security is also vital in this regard, since this entire effort deals with highly sensitive information and identification of access right to specific people to specific information should be correctly identified and captured at the requirements analysis stage.

Advantages

There are so many advantages of BI system. More presentation of analytics directly to the customer or supply chain partner will be possible. Customer scores, customer campaigns and new product bundles can all be produced from analytic structures resulting in high customer retention and creation of unique products. More collaboration within information can be achieved from effective BI. Rather than middle managers getting great reports and making their own areas look good, information will be conveyed into other functions and rapidly shared to create collaborative decisions increasing the efficiency and accuracy. The return on human capital will be greatly increased.

Managers at all levels will save their time on data analysis, and hence saving money for the enterprise, as the time of managers is equal to money in a financial perspective. Since powerful BI would enable monitoring internal processes of the enterprises more closely and allow making them more efficient, the overall success of the organization would automatically grow. All these would help to derive a high ROI on BI together with a strong DW. It is a common experience to notice very high ROI figures on such implementations, and it is also important to note that there are many non-measurable gains whilst we consider most of the measurable gains for the ROI calculation. However, at a stage where it is intended to take the management buy-in for the BI initiative, it's important to convert all the non measurable gains in to monitory values as much as possible, for example, saving of managers time can be converted in to a monitory value using his compensation.

The author has knowledge in both Business and IT. Started career as a Software Engineer and moved to work in the business analysis area of a premier US based software company.

Source: http://ezinearticles.com/?Business-Intelligence-and-Data-Warehousing-in-a-Business-Perspective&id=35640

Monday, 8 August 2016

Web Scraping Best Practices

Web Scraping Best Practices

Extracting data from the World Wide Web has several challenges as more webmasters are working day and night to lower cases of scraping and crawling of their data in order to survive in the competitive world. There are various other problems you may face when web scraping and most of them can be avoided by adapting and implementing certain web scraping best practices as discussed in this article.

Have knowledge of the scraping tools

Acquiring adequate knowledge of hurdles that may be encountered during web scraping, you will be able to have a smooth web scraping experience and be on the safe side of the law. Conduct a thorough research on the types of tools you will use for scraping and crawling. Firsthand knowledge on these tools will help you find the data you need without being blocked.

Proper proxy software that acts as the middle party works well when you know how to work around HTTP and HTML protocols. Use tools that can change crawling patterns, URLs and data retrieved even when you are crawling on one domain. This will help you abide to the rules and regulations that come with web scraping activities and escaping any legal issues.
Conduct your scraping activities during off-peak hours

You may opt to extract data during times that less people have access for instance over the weekends, during late night hours, public holidays among others. Visiting a website on several instances to retrieve the same type of data is a waste of bandwidth. It is always advisable to download the entire site content to your computer and thereafter you can access it whenever need arises.
Hide your scrapping activities

There is a thin line between ethical and unethical crawling hence you should completely evade being on the top user list of a particular website. Cover up your track as best as you can by making use of proxy IPs to avoid any legal problems. You may also use multiple IP addresses or VPN services to conceal your scrapping activities and lower chances of landing on a website’s blacklist.

Website owners today are very protective of their data and any other information existing under their unique url. Be keen when going through the terms and conditions indicated by websites as they may consider crawling as an infringement of their privacy. Simple etiquette goes a long way. Your web scraping efforts will be fruitful if the site owner supports the idea of sharing data.
Keep record of your activities

Web scraping involves large amount of data.Due to this you may not always remember each and every piece of information you have acquired, gathering statistics will help you monitor your activities.
Load data in phases

Web scraping demands a lot of patience from you when using the crawlers to get needed information. Take the process in a slow manner by loading data one piece at a time. Several parallel request to the same domain can crush the entire site or retrace the scrapping attempts back to your local machine.

Loading data small bits will save you the hustle of scrapping afresh in case that your activity has been interrupted because you will have already stored part of the data required. You can reduce the loading data on an individual domain through various techniques such as caching pages that you have scrapped to escape redundancy occurrences. Use auto throttling mechanisms to increase the amount of traffic to the website and pause for breaks between requests to prevent getting banned.
Conclusion

Through these few mentioned web scraping best practices you will be able to work around website and gather the data required as per clients’ request without major hurdles along the way. The ultimate goal of every web scraper is to be able to access vital information and at the same time remain on the good side of the law.

Source: http://nocodewebscraping.com/web-scraping-best-practices/

Thursday, 4 August 2016

Three Common Methods For Web Data Extraction

Three Common Methods For Web Data Extraction

Probably the most common technique used traditionally to extract data from web pages this is to cook up some regular expressions that match the pieces you want (e.g., URL's and link titles). Our screen-scraper software actually started out as an application written in Perl for this very reason. In addition to regular expressions, you might also use some code written in something like Java or Active Server Pages to parse out larger chunks of text. Using raw regular expressions to pull out the data can be a little intimidating to the uninitiated, and can get a bit messy when a script contains a lot of them. At the same time, if you're already familiar with regular expressions, and your scraping project is relatively small, they can be a great solution.

Other techniques for getting the data out can get very sophisticated as algorithms that make use of artificial intelligence and such are applied to the page. Some programs will actually analyze the semantic content of an HTML page, then intelligently pull out the pieces that are of interest. Still other approaches deal with developing "ontologies", or hierarchical vocabularies intended to represent the content domain.

There are a number of companies (including our own) that offer commercial applications specifically intended to do screen-scraping. The applications vary quite a bit, but for medium to large-sized projects they're often a good solution. Each one will have its own learning curve, so you should plan on taking time to learn the ins and outs of a new application. Especially if you plan on doing a fair amount of screen-scraping it's probably a good idea to at least shop around for a screen-scraping application, as it will likely save you time and money in the long run.

So what's the best approach to data extraction? It really depends on what your needs are, and what resources you have at your disposal. Here are some of the pros and cons of the various approaches, as well as suggestions on when you might use each one:

Raw regular expressions and code

Advantages:

- If you're already familiar with regular expressions and at least one programming language, this can be a quick solution.

- Regular expressions allow for a fair amount of "fuzziness" in the matching such that minor changes to the content won't break them.

- You likely don't need to learn any new languages or tools (again, assuming you're already familiar with regular expressions and a programming language).

- Regular expressions are supported in almost all modern programming languages. Heck, even VBScript has a regular expression engine. It's also nice because the various regular expression implementations don't vary too significantly in their syntax.

Disadvantages:

- They can be complex for those that don't have a lot of experience with them. Learning regular expressions isn't like going from Perl to Java. It's more like going from Perl to XSLT, where you have to wrap your mind around a completely different way of viewing the problem.

- They're often confusing to analyze. Take a look through some of the regular expressions people have created to match something as simple as an email address and you'll see what I mean.

- If the content you're trying to match changes (e.g., they change the web page by adding a new "font" tag) you'll likely need to update your regular expressions to account for the change.

- The data discovery portion of the process (traversing various web pages to get to the page containing the data you want) will still need to be handled, and can get fairly complex if you need to deal with cookies and such.

When to use this approach: You'll most likely use straight regular expressions in screen-scraping when you have a small job you want to get done quickly. Especially if you already know regular expressions, there's no sense in getting into other tools if all you need to do is pull some news headlines off of a site.

Ontologies and artificial intelligence

Advantages:

- You create it once and it can more or less extract the data from any page within the content domain you're targeting.

- The data model is generally built in. For example, if you're extracting data about cars from web sites the extraction engine already knows what the make, model, and price are, so it can easily map them to existing data structures (e.g., insert the data into the correct locations in your database).

- There is relatively little long-term maintenance required. As web sites change you likely will need to do very little to your extraction engine in order to account for the changes.

Disadvantages:

- It's relatively complex to create and work with such an engine. The level of expertise required to even understand an extraction engine that uses artificial intelligence and ontologies is much higher than what is required to deal with regular expressions.

- These types of engines are expensive to build. There are commercial offerings that will give you the basis for doing this type of data extraction, but you still need to configure them to work with the specific content domain you're targeting.

- You still have to deal with the data discovery portion of the process, which may not fit as well with this approach (meaning you may have to create an entirely separate engine to handle data discovery). Data discovery is the process of crawling web sites such that you arrive at the pages where you want to extract data.

When to use this approach: Typically you'll only get into ontologies and artificial intelligence when you're planning on extracting information from a very large number of sources. It also makes sense to do this when the data you're trying to extract is in a very unstructured format (e.g., newspaper classified ads). In cases where the data is very structured (meaning there are clear labels identifying the various data fields), it may make more sense to go with regular expressions or a screen-scraping application.

Screen-scraping software

Advantages:

- Abstracts most of the complicated stuff away. You can do some pretty sophisticated things in most screen-scraping applications without knowing anything about regular expressions, HTTP, or cookies.

- Dramatically reduces the amount of time required to set up a site to be scraped. Once you learn a particular screen-scraping application the amount of time it requires to scrape sites vs. other methods is significantly lowered.

- Support from a commercial company. If you run into trouble while using a commercial screen-scraping application, chances are there are support forums and help lines where you can get assistance.

Disadvantages:

- The learning curve. Each screen-scraping application has its own way of going about things. This may imply learning a new scripting language in addition to familiarizing yourself with how the core application works.

- A potential cost. Most ready-to-go screen-scraping applications are commercial, so you'll likely be paying in dollars as well as time for this solution.

- A proprietary approach. Any time you use a proprietary application to solve a computing problem (and proprietary is obviously a matter of degree) you're locking yourself into using that approach. This may or may not be a big deal, but you should at least consider how well the application you're using will integrate with other software applications you currently have. For example, once the screen-scraping application has extracted the data how easy is it for you to get to that data from your own code?

When to use this approach: Screen-scraping applications vary widely in their ease-of-use, price, and suitability to tackle a broad range of scenarios. Chances are, though, that if you don't mind paying a bit, you can save yourself a significant amount of time by using one. If you're doing a quick scrape of a single page you can use just about any language with regular expressions. If you want to extract data from hundreds of web sites that are all formatted differently you're probably better off investing in a complex system that uses ontologies and/or artificial intelligence. For just about everything else, though, you may want to consider investing in an application specifically designed for screen-scraping.

As an aside, I thought I should also mention a recent project we've been involved with that has actually required a hybrid approach of two of the aforementioned methods. We're currently working on a project that deals with extracting newspaper classified ads. The data in classifieds is about as unstructured as you can get. For example, in a real estate ad the term "number of bedrooms" can be written about 25 different ways. The data extraction portion of the process is one that lends itself well to an ontologies-based approach, which is what we've done. However, we still had to handle the data discovery portion. We decided to use screen-scraper for that, and it's handling it just great. The basic process is that screen-scraper traverses the various pages of the site, pulling out raw chunks of data that constitute the classified ads. These ads then get passed to code we've written that uses ontologies in order to extract out the individual pieces we're after. Once the data has been extracted we then insert it into a database.

Source: http://ezinearticles.com/?Three-Common-Methods-For-Web-Data-Extraction&id=165416

Sunday, 31 July 2016

Best Alternative For Linkedin Data Scraping

Best Alternative For Linkedin Data Scraping

When I started my career in sales, one of the things that my VP of sales told me is that ” In sales, assumptions are the mother of all f**k ups “. I know the F word sounds a bit inappropriate, but that is the exact word he used. He was trying to convey the simple point that every prospect is different, so don’t guess, use data to come up with decisions.

I joined Datahut and we are working on a product that helps sales people. I thought I should discuss it with you guys and take your feedback.

Let me tell you how the idea evolved itself. At Datahut, we get to hear a lot of problems customers want to solve. Almost 30 percent of all the inbound leads ask us to help them with lead generation.

Most of them simply ask, “Can you scrape Linkedin for me”?

Every time, we politely refused.

But not anymore, we figured out a way to solve their problem without scraping Linkedin.

This should raise some questions in your mind.

1) What problem is he trying to solve?– Most of the time their sales team does not have the accurate data about the prospects. This leads to a total chaos. It will end up in a waste of both time and money by selling the leads that are not sales qualified.

2) Why do they need data specifically from Linkedin? – LinkedIn is the world’s largest business network. In his view, there is no better place to find leads for his business than Linkedin. It is right in a way.

3) Ok, then what is wrong in scraping Linkedin? – Scraping Linkedin is against its terms and it can lead to legal issues. Linkedin has an excellent anti-scraping mechanism which can make the scraping costly.

4) How severe is the problem? – The problem has a direct impact on the revenues as the productivity of the sales team is too low. Without enough sales, the company is a joke.

5) Is there a better way? – Of course yes. The people with profiles in LinkedIn are in other sites too. eg. Google plus, CrunchBase etc. If we can mine and correlate the data, we can generate leads with rich information. It will have better quality than scraping LinkedIn.

6) What to do when the machine intelligence fails? – We have to use human intelligence. Period!

Datahut is working on a platform that can help you get leads that match your ideal buyer persona. It will be a complete Business intelligence platform powered by machine and human intelligence for an efficient lead research & discovery.We named it Leadintel. We’ve also established some partnerships that help to enrich the data and saves the trouble of lawsuits.

We are opening our platform for beta users. You can request an invitation using the contact form. What do you think about this? What are your suggestions?

Thanks for reading this blog post. Datahut offers affordable data extraction services (DaaS) . If you need help with your web scraping projects let us know and we will be glad to help.

Source:http://blog.datahut.co/best-alternative-for-linkedin-data-scraping/

Monday, 11 July 2016

Web Scraping Best Practices

Extracting data from the World Wide Web has several challenges as more webmasters are working day and night to lower cases of scraping and crawling of their data in order to survive in the competitive world. There are various other problems you may face when web scraping and most of them can be avoided by adapting and implementing certain web scraping best practices as discussed in this article.

Have knowledge of the scraping tools

Acquiring adequate knowledge of hurdles that may be encountered during web scraping, you will be able to have a smooth web scraping experience and be on the safe side of the law. Conduct a thorough research on the types of tools you will use for scraping and crawling. Firsthand knowledge on these tools will help you find the data you need without being blocked.

Proper proxy software that acts as the middle party works well when you know how to work around HTTP and HTML protocols. Use tools that can change crawling patterns, URLs and data retrieved even when you are crawling on one domain. This will help you abide to the rules and regulations that come with web scraping activities and escaping any legal issues.

Conduct your scraping activities during off-peak hours

You may opt to extract data during times that less people have access for instance over the weekends, during late night hours, public holidays among others. Visiting a website on several instances to retrieve the same type of data is a waste of bandwidth. It is always advisable to download the entire site content to your computer and thereafter you can access it whenever need arises.

Hide your scrapping activities

There is a thin line between ethical and unethical crawling hence you should completely evade being on the top user list of a particular website. Cover up your track as best as you can by making use of proxy IPs to avoid any legal problems. You may also use multiple IP addresses or VPN services to conceal your scrapping activities and lower chances of landing on a website’s blacklist.

Website owners today are very protective of their data and any other information existing under their unique url. Be keen when going through the terms and conditions indicated by websites as they may consider crawling as an infringement of their privacy. Simple etiquette goes a long way. Your web scraping efforts will be fruitful if the site owner supports the idea of sharing data.

Keep record of your activities

Web scraping involves large amount of data.Due to this you may not always remember each and every piece of information you have acquired, gathering statistics will help you monitor your activities.

Load data in phases

Web scraping demands a lot of patience from you when using the crawlers to get needed information. Take the process in a slow manner by loading data one piece at a time. Several parallel request to the same domain can crush the entire site or retrace the scrapping attempts back to your local machine.

Loading data small bits will save you the hustle of scrapping afresh in case that your activity has been interrupted because you will have already stored part of the data required. You can reduce the loading data on an individual domain through various techniques such as caching pages that you have scrapped to escape redundancy occurrences. Use auto throttling mechanisms to increase the amount of traffic to the website and pause for breaks between requests to prevent getting banned.

Conclusion

Through these few mentioned web scraping best practices you will be able to work around website and gather the data required as per clients’ request without major hurdles along the way. The ultimate goal of every web scraper is to be able to access vital information and at the same time remain on the good side of the law.

Source URl : http://nocodewebscraping.com/web-scraping-best-practices/

Sunday, 10 July 2016

How to Avoid the Most Common Traps in Web Scraping?

A lot of industries are successfully using web scraping for creating massive data banks of applicable and actionable data which can be used on every day basis for further business interests as well as offer superior services to the customers. However, web scraping does have its own roadblocks and problems.

Using automated scraping, you could face many common problems. The web scraping spiders or programs present a definite picture to their targeted websites. Then, they use this behavior for making out between the human users as well as web scraping spiders. According to those details, a website can employ a certain web scraping traps for stopping your efforts. Here are some of the most common traps:

How Can You Avoid These Traps?

Some measures, which you can use to make sure that you avoid general web scraping traps include:

• Begin with caching pages, which you already have crawled and make sure that you are not required to load them again.
• Find out if any particular website, which you try to scratch has any particular dislikes towards the web scraping tools.
• Handle scraping in moderate phases as well as take the content required.
• Take things slower and do not overflow the website through many parallel requests, which put strain on the resources.
• Try to minimize the weight on every sole website, which you visit to scrape.
• Use a superior web scraping tool that can save and test data, patterns and URLs.
• Use several IP addresses to scrape efforts or taking benefits of VPN services and proxy servers. It will assist to decrease the dangers of having trapped as well as blacklisted through a website.

Source URL :http://www.3idatascraping.com/category/web-data-scraping

Thursday, 7 July 2016

Scraping the Royal Society membership list

To a data scientist any data is fair game, from my interest in the history of science I came across the membership records of the Royal Society from 1660 to 2007 which are available as a single PDF file. I’ve scraped the membership list before: the first time around I wrote a C# application which parsed a plain text file which I had made from the original PDF using an online converting service, looking back at the code it is fiendishly complicated and cluttered by boilerplate code required to build a GUI. ScraperWiki includes a pdftoxml function so I thought I’d see if this would make the process of parsing easier, and compare the ScraperWiki experience more widely with my earlier scraper.

The membership list is laid out quite simply, as shown in the image below, each member (or Fellow) record spans two lines with the member name in the left most column on the first line and information on their birth date and the day they died, the class of their Fellowship and their election date on the second line.

Later in the document we find that information on the Presidents of the Royal Society is found on the same line as the Fellow name and that Royal Patrons are formatted a little differently. There are also alias records where the second line points to the primary record for the name on the first line.

pdftoxml converts a PDF into an xml file, wherein each piece of text is located on the page using spatial coordinates, an individual line looks like this:

<text top="243" left="135" width="221" height="14" font="2">Abbot, Charles, 1st Baron Colchester </text>

This makes parsing columnar data straightforward you simply need to select elements with particular values of the “left” attribute. It turns out that the columns are not in exactly the same positions throughout the whole document, which appears to have been constructed by tacking together the membership list A-J with that of K-Z, but this can easily be resolved by accepting a small range of positions for each column.

Attempting to automatically parse all 395 pages of the document reveals some transcription errors: one Fellow was apparently elected on 16th March 197 – a bit of Googling reveals that the real date is 16th March 1978. Another fellow is classed as a “Felllow”, and whilst most of the dates of birth and death are separated by a dash some are separated by an en dash which as far as the code is concerned is something completely different and so on. In my earlier iteration I missed some of these quirks or fixed them by editing the converted text file. These variations suggest that the source document was typed manually rather than being output from a pre-existing database. Since I couldn’t edit the source document I was obliged to code around these quirks.

ScraperWiki helpfully makes putting data into a SQLite database the simplest option for a scraper. My handling of dates in this version of the scraper is a little unsatisfactory: presidential terms are described in terms of a start and end year but are rendered 1st January of those years in the database. Furthermore, in historical documents dates may not be known accurately so someone may have a birth date described as “circa 1782? or “c 1782?, even more vaguely they may be described as having “flourished 1663-1778? or “fl. 1663-1778?. Python’s default datetime module does not capture this subtlety and if it did the database used to store dates would need to support it too to be useful – I’ve addressed this by storing the original life span data as text so that it can be analysed should the need arise. Storing dates as proper dates in the database, rather than text strings means we can query the database using date based queries.

ScraperWiki provides an API to my dataset so that I can query it using SQL, and since it is public anyone else can do this too. So, for example, it’s easy to write queries that tell you the the database contains 8019 Fellows, 56 Presidents, 387 born before 1700, 3657 with no birth date, 2360 with no death date, 204 “flourished”, 450 have birth dates “circa” some year.

I can count the number of classes of fellows:

select distinct class,count(*) from `RoyalSocietyFellows` group by class

Make a table of all of the Presidents of the Royal Society

select * from `RoyalSocietyFellows` where StartPresident not null order by StartPresident desc

…and so on. These illustrations just use the ScraperWiki htmltable export option to display the data as a table but equally I could use similar queries to pull data into a visualisation.

Comparing this to my earlier experience, the benefits of using ScraperWiki are:

•    Nice traceable code to provide a provenance for the dataset;

•    Access to the pdftoxml library;

•    Strong encouragement to “do the right thing” and put the data into a database;

•    Publication of the data;

•    A simple API giving access to the data for reuse by all.

My next target for ScraperWiki may well be the membership lists for the French Academie des Sciences, a task which proved too complex for a simple plain text scraper…

Sources URL :                             http://yellowpagesdatascraping.blogspot.in/2015/06/scraping-royal-society-membership-list.html

Saturday, 18 June 2016

Web Data Extraction Services and Data Collection Form Website Pages

For any business market research and surveys plays crucial role in strategic decision making. Web scrapping and data extraction techniques help you find relevant information and data for your business or personal use. Most of the time professionals manually copy-paste data from web pages or download a whole website resulting in waste of time and efforts.

Instead, consider using web scraping techniques that crawls through thousands of website pages to extract specific information and simultaneously save this information into a database, CSV file, XML file or any other custom format for future reference.

Examples of web data extraction process include:
• Spider a government portal, extracting names of citizens for a survey
• Crawl competitor websites for product pricing and feature data
• Use web scraping to download images from a stock photography site for website design

Automated Data Collection
Web scraping also allows you to monitor website data changes over stipulated period and collect these data on a scheduled basis automatically. Automated data collection helps you discover market trends, determine user behavior and predict how data will change in near future.

Examples of automated data collection include:
• Monitor price information for select stocks on hourly basis
• Collect mortgage rates from various financial firms on daily basis
• Check whether reports on constant basis as and when required

Using web data extraction services you can mine any data related to your business objective, download them into a spreadsheet so that they can be analyzed and compared with ease.

In this way you get accurate and quicker results saving hundreds of man-hours and money!

With web data extraction services you can easily fetch product pricing information, sales leads, mailing database, competitors data, profile data and many more on a consistent basis.

Source URL :    http://ezinearticles.com/?Web-Data-Extraction-Services-and-Data-Collection-Form-Website-Pages&id=4860417