Friday, 3 July 2015

ECJ clarifies Database Directive scope in screen scraping case

EC on the legal protection of databases (Database Directive) in a case concerning the extraction of data from a third party’s website by means of automated systems or software for commercial purposes (so called 'screen scraping').

Flight data extracted

The case, Ryanair Ltd vs. PR Aviation BV, C-30/14, is of interest to a range of companies such as price comparison websites. It stemmed from  Dutch company PR Aviation operation of a website where consumers can search through flight data of low-cost airlines  (including Ryanair), compare prices and, on payment of a commission, book a flight. The relevant flight data is extracted from third-parties’ websites by means of ‘screen scraping’ practices.

Ryanair claimed that PR Aviation’s activity:

• amounted to infringement of copyright (relating to the structure and architecture of the database) and of the so-called sui generis database right (i.e. the right granted to the ‘maker’ of the database where certain investments have been made to obtain, verify, or present the contents of a database) under the Netherlands law implementing the Database Directive;

• constituted breach of contract. In this respect, Ryanair claimed that a contract existed with PR Aviation for the use of its website. Access to the latter requires acceptance, by clicking a box, of the airline’s general terms and conditions which, amongst others, prohibit unauthorized ‘screen scraping’ practices for commercial purposes.

Ryanair asked Dutch courts to prohibit the infringement and order damages. In recent years the company has been engaged in several legal cases against web scrapers across Europe.

The Local Court, Utrecht, and the Court of Appeals of Amsterdam dismissed Ryanair’s claims on different grounds. The Court of Appeals, in particular, cited PR Aviation’s screen scraping of Ryanair’s website as amounting to a “normal use” of said website within the meaning of the lawful user exceptions under Sections 6 and 8 of the Database Directive, which cannot be derogated by contract (Section 15).

Ryanair appealed

Ryanair appealed the decision before the Netherlands Supreme Court (Hoge Raad der Nederlanden), which decided to refer the following question to the ECJ for a preliminary ruling: “Does the application of [Directive 96/9] also extend to online databases which are not protected by copyright on the basis of Chapter II of said directive or by a sui generis right on the basis of Chapter III, in the sense that the freedom to use such databases through the (whether or not analogous) application of Article[s] 6(1) and 8, in conjunction with Article 15 [of Directive 96/9] may not be limited contractually?.”

The ECJ’s ruling

The ECJ (without the need of the opinion of the advocate general) ruled that the Database Directive is not applicable to databases which are not protected either by copyright or by the sui generis database right. Therefore, exceptions to restricted acts set forth by Sections 6 and 8 of the Directive do not prevent the database owner from establishing contractual limitations on its use by third parties. In other words, restrictions to the freedom to contract set forth by the Database Directive do not apply in cases of unprotected databases. Whether Ryanair’s website may be entitled to copyright or sui generis database right protection needs to be determined by the competent national court.

The ECJ’s decision is not particularly striking from a legal standpoint. Yet, it could have a significant impact on the business model of price comparison websites, aggregators, and similar businesses. Owners of databases that could not rely on intellectual property protection may contractually prevent extraction and use (“scraping”) of content from their online databases. Thus, unprotected databases could receive greater protection than the one granted by IP law.

Antitrust implications

However, the lawfulness of contractual restrictions prohibiting access and reuse of data through screen scraping practices should be assessed under an antitrust perspective. In this respect, in 2013 the Court of Milan ruled that Ryanair’s refusal to grant access to its database to the online travel agency Viaggiare S.r.l. amounted to an abuse of dominant position in the downstream market of information and intermediation on flights (decision of June 4, 2013 Viaggiare S.r.l. vs Ryanair Ltd). Indeed, a balance should be struck between the need to compensate the efforts and investments made by the creator of the database with the interest of third parties to be granted with access to information (especially in those cases where the latter are not entitled to copyright protection).

Additionally, web scraping triggers other issues which have not been considered by the ECJ’s ruling. These include, but are not limited to trademark law (i.e., whether the use of a company’s names/logos by the web scraper without consent may amount to trademark infringement), data protection (e.g., in case the scraping involves personal data), or unfair competition.

Source: http://www.globallegalpost.com/blogs/global-view/ecj-clarifies-database-directive-scope-in-screen-scraping-case-128701/

Thursday, 25 June 2015

Data Scraping - Increasing Accessibility by Scraping Information From PDF

You may have heard about data scraping which is a method that is being used by computer programs in extracting data from an output that comes from another program. To put it simply, this is a process which involves the automatic sorting of information that can be found on different resources including the internet which is inside an html file, PDF or any other documents. In addition to that, there is the collection of pertinent information. These pieces of information will be contained into the databases or spreadsheets so that the users can retrieve them later.

Most of the websites today have text that can be accessed and written easily in the source code. However, there are now other businesses nowadays that choose to make use of Adobe PDF files or Portable Document Format. This is a type of file that can be viewed by simply using the free software known as the Adobe Acrobat. Almost any operating system supports the said software. There are many advantages when you choose to utilize PDF files. Among them is that the document that you have looks exactly the same even if you put it in another computer so that you can view it. Therefore, this makes it ideal for business documents or even specification sheets. Of course there are disadvantages as well. One of which is that the text that is contained in the file is converted into an image. In this case, it is often that you may have problems with this when it comes to the copying and pasting.

This is why there are some that start scraping information from PDF. This is often called PDF scraping in which this is the process that is just like data scraping only that you will be getting information that is contained in your PDF files. In order for you to begin scraping information from PDF, you must choose and exploit a tool that is specifically designed for this process. However, you will find that it is not easy to locate the right tool that will enable you to perform PDF scraping effectively. This is because most of the tools today have problems in obtaining exactly the same data that you want without personalizing them.

Nevertheless, if you search well enough, you will be able to encounter the program that you are looking for. There is no need for you to have programming language knowledge in order for you to use them. You can easily specify your own preferences and the software will do the rest of the work for you. There are also companies out there that you can contact and they will perform the task since they have the right tools that they can use. If you choose to do things manually, you will find that this is indeed tedious and complicated whereas if you compare this to having professionals do the job for you, they will be able to finish it in no time at all. Scraping information from PDF is a process where you collect the information that can be found on the internet and this does not infringe copyright laws.

Source: http://ezinearticles.com/?Increasing-Accessibility-by-Scraping-Information-From-PDF&id=4593863

Saturday, 20 June 2015

Web Scraping: working with APIs

APIs present researchers with a diverse set of data sources through a standardised access mechanism: send a pasted together HTTP request, receive JSON or XML in return. Today we tap into a range of APIs to get comfortable sending queries and processing responses.

These are the slides from the final class in Web Scraping through R: Web scraping for the humanities and social sciences

This week we explore how to use APIs in R, focusing on the Google Maps API. We then attempt to transfer this approach to query the Yandex Maps API. Finally, the practice section includes examples of working with the YouTube V2 API, a few ‘social’ APIs such as LinkedIn and Twitter, as well as APIs less off the beaten track (Cricket scores, anyone?).

I enjoyed teaching this course and hope to repeat and improve on it next year. When designing the course I tried to cram in everything I wish I had been taught early on in my PhD (resulting in information overload, I fear). Still, hopefully it has been useful to students getting started with digital data collection, showing on the one hand what is possible, and on the other giving some idea of key steps in achieving research objectives.

Download the .Rpres file to use in Rstudio here

A regular R script with code-snippets only can be accessed here

Slides from the first session here

Slides from the second session here

Slides from the third session here

Source: http://www.r-bloggers.com/web-scraping-working-with-apis/

Tuesday, 9 June 2015

Web Scraping : Data Mining vs Screen-Scraping

Data mining isn't screen-scraping. I know that some people in the room may disagree with that statement, but they're actually two almost completely different concepts.

In a nutshell, you might state it this way: screen-scraping allows you to get information, where data mining allows you to analyze information. That's a pretty big simplification, so I'll elaborate a bit.

The term "screen-scraping" comes from the old mainframe terminal days where people worked on computers with green and black screens containing only text. Screen-scraping was used to extract characters from the screens so that they could be analyzed. Fast-forwarding to the web world of today, screen-scraping now most commonly refers to extracting information from web sites. That is, computer programs can "crawl" or "spider" through web sites, pulling out data. People often do this to build things like comparison shopping engines, archive web pages, or simply download text to a spreadsheet so that it can be filtered and analyzed.

Data mining, on the other hand, is defined by Wikipedia as the "practice of automatically searching large stores of data for patterns." In other words, you already have the data, and you're now analyzing it to learn useful things about it. Data mining often involves lots of complex algorithms based on statistical methods. It has nothing to do with how you got the data in the first place. In data mining you only care about analyzing what's already there.

The difficulty is that people who don't know the term "screen-scraping" will try Googling for anything that resembles it. We include a number of these terms on our web site to help such folks; for example, we created pages entitled Text Data Mining, Automated Data Collection, Web Site Data Extraction, and even Web Site Ripper (I suppose "scraping" is sort of like "ripping"). So it presents a bit of a problem-we don't necessarily want to perpetuate a misconception (i.e., screen-scraping = data mining), but we also have to use terminology that people will actually use.

Source: http://ezinearticles.com/?Data-Mining-vs-Screen-Scraping&id=146813

Tuesday, 2 June 2015

Getting Data from the Web Scraping

You’ve tried everything else, and you haven’t managed to get your hands on the data you want. You’ve found the data on the web, but, alas — no download options are available and copy-paste has failed you. Fear not, there may still be a way to get the data out. For example you can:

•    Get data from web-based APIs, such as interfaces provided by online databases and many modern web applications (including Twitter, Facebook and many others). This is a fantastic way to access government or commercial data, as well as data from social media sites.

•    Extract data from PDFs. This is very difficult, as PDF is a language for printers and does not retain much information on the structure of the data that is displayed within a document. Extracting information from PDFs is beyond the scope of this book, but there are some tools and tutorials that may help you do it.

•    Screen scrape web sites. During screen scraping, you’re extracting structured content from a normal web page with the help of a scraping utility or by writing a small piece of code. While this method is very powerful and can be used in many places, it requires a bit of understanding about how the web works.

With all those great technical options, don’t forget the simple options: often it is worth to spend some time searching for a file with machine-readable data or to call the institution which is holding the data you want.

In this chapter we walk through a very basic example of scraping data from an HTML web page.

What is machine-readable data?

The goal for most of these methods is to get access to machine-readable data. Machine readable data is created for processing by a computer, instead of the presentation to a human user. The structure of such data relates to contained information, and not the way it is displayed eventually. Examples of easily machine-readable formats include CSV, XML, JSON and Excel files, while formats like Word documents, HTML pages and PDF files are more concerned with the visual layout of the information. PDF for example is a language which talks directly to your printer, it’s concerned with position of lines and dots on a page, rather than distinguishable characters.

Scraping web sites: what for?

Everyone has done this: you go to a web site, see an interesting table and try to copy it over to Excel so you can add some numbers up or store it for later. Yet this often does not really work, or the information you want is spread across a large number of web sites. Copying by hand can quickly become very tedious, so it makes sense to use a bit of code to do it.

The advantage of scraping is that you can do it with virtually any web site — from weather forecasts to government spending, even if that site does not have an API for raw data access.

What you can and cannot scrape

There are, of course, limits to what can be scraped. Some factors that make it harder to scrape a site include:

•    Badly formatted HTML code with little or no structural information e.g. older government websites.

•    Authentication systems that are supposed to prevent automatic access e.g. CAPTCHA codes and paywalls.

•    Session-based systems that use browser cookies to keep track of what the user has been doing.

•    A lack of complete item listings and possibilities for wildcard search.

•    Blocking of bulk access by the server administrators.

Another set of limitations are legal barriers: some countries recognize database rights, which may limit your right to re-use information that has been published online. Sometimes, you can choose to ignore the license and do it anyway — depending on your jurisdiction, you may have special rights as a journalist. Scraping freely available Government data should be fine, but you may wish to double check before you publish. Commercial organizations — and certain NGOs — react with less tolerance and may try to claim that you’re “sabotaging” their systems. Other information may infringe the privacy of individuals and thereby violate data privacy laws or professional ethics.

Tools that help you scrape

There are many programs that can be used to extract bulk information from a web site, including browser extensions and some web services. Depending on your browser, tools like Readability (which helps extract text from a page) or DownThemAll (which allows you to download many files at once) will help you automate some tedious tasks, while Chrome’s Scraper extension was explicitly built to extract tables from web sites. Developer extensions like FireBug (for Firefox, the same thing is already included in Chrome, Safari and IE) let you track exactly how a web site is structured and what communications happen between your browser and the server.

ScraperWiki is a web site that allows you to code scrapers in a number of different programming languages, including Python, Ruby and PHP. If you want to get started with scraping without the hassle of setting up a programming environment on your computer, this is the way to go. Other web services, such as Google Spreadsheets and Yahoo! Pipes also allow you to perform some extraction from other web sites.

How does a web scraper work?

Web scrapers are usually small pieces of code written in a programming language such as Python, Ruby or PHP. Choosing the right language is largely a question of which community you have access to: if there is someone in your newsroom or city already working with one of these languages, then it makes sense to adopt the same language.

While some of the click-and-point scraping tools mentioned before may be helpful to get started, the real complexity involved in scraping a web site is in addressing the right pages and the right elements within these pages to extract the desired information. These tasks aren’t about programming, but understanding the structure of the web site and database.

When displaying a web site, your browser will almost always make use of two technologies: HTTP is a way for it to communicate with the server and to request specific resource, such as documents, images or videos. HTML is the language in which web sites are composed.

The anatomy of a web page

Any HTML page is structured as a hierarchy of boxes (which are defined by HTML “tags”). A large box will contain many smaller ones — for example a table that has many smaller divisions: rows and cells. There are many types of tags that perform different functions — some produce boxes, others tables, images or links. Tags can also have additional properties (e.g. they can be unique identifiers) and can belong to groups called ‘classes’, which makes it possible to target and capture individual elements within a document. Selecting the appropriate elements this way and extracting their content is the key to writing a scraper.

Viewing the elements in a web page: everything can be broken up into boxes within boxes.

To scrape web pages, you’ll need to learn a bit about the different types of elements that can be in an HTML document. For example, the <table> element wraps a whole table, which has <tr> (table row) elements for its rows, which in turn contain <td> (table data) for each cell. The most common element type you will encounter is <div>, which can basically mean any block of content. The easiest way to get a feel for these elements is by using the developer toolbar in your browser: they will allow you to hover over any part of a web page and see what the underlying code is.

Tags work like book ends, marking the start and the end of a unit. For example <em> signifies the start of an italicized or emphasized piece of text and </em> signifies the end of that section. Easy.

Figure 57. The International Atomic Energy Agency’s (IAEA) portal (news.iaea.org)

An example: scraping nuclear incidents with Python

NEWS is the International Atomic Energy Agency’s (IAEA) portal on world-wide radiation incidents (and a strong contender for membership in the Weird Title Club!). The web page lists incidents in a simple, blog-like site that can be easily scraped.

To start, create a new Python scraper on ScraperWiki and you will be presented with a text area that is mostly empty, except for some scaffolding code. In another browser window, open the IAEA site and open the developer toolbar in your browser. In the “Elements” view, try to find the HTML element for one of the news item titles. Your browser’s developer toolbar helps you connect elements on the web page with the underlying HTML code.

Investigating this page will reveal that the titles are <h4> elements within a <table>. Each event is a <tr> row, which also contains a description and a date. If we want to extract the titles of all events, we should find a way to select each row in the table sequentially, while fetching all the text within the title elements.

In order to turn this process into code, we need to make ourselves aware of all the steps involved. To get a feeling for the kind of steps required, let’s play a simple game: In your ScraperWiki window, try to write up individual instructions for yourself, for each thing you are going to do while writing this scraper, like steps in a recipe (prefix each line with a hash sign to tell Python that this not real computer code). For example:

# Look for all rows in the table

# Unicorn must not overflow on left side.

Try to be as precise as you can and don’t assume that the program knows anything about the page you’re attempting to scrape.

Once you’ve written down some pseudo-code, let’s compare this to the essential code for our first scraper:

import scraperwiki

In this first section, we’re importing existing functionality from libraries — snippets of pre-written code. scraperwiki will give us the ability to download web sites, while lxml is a tool for the structured analysis of HTML documents. Good news: if you are writing a Python scraper with ScraperWiki, these two lines will always be the same.

doc_text = scraperwiki.scrape(url)

doc = html.fromstring(doc_text)

Next, the code makes a name (variable): url, and assigns the URL of the IAEA page as its value. This tells the scraper that this thing exists and we want to pay attention to it. Note that the URL itself is in quotes as it is not part of the program code but a string, a sequence of characters.

We then use the url variable as input to a function, scraperwiki.scrape. A function will provide some defined job — in this case it’ll download a web page. When it’s finished, it’ll assign its output to another variable, doc_text. doc_text will now hold the actual text of the website — not the visual form you see in your browser, but the source code, including all the tags. Since this form is not very easy to parse, we’ll use another function, html.fromstring, to generate a special representation where we can easily address elements, the so-called document object model (DOM).

In this final step, we use the DOM to find each row in our table and extract the event’s title from its header. Two new concepts are used: the for loop and element selection (.cssselect). The for loop essentially does what its name implies; it will traverse a list of items, assigning each a temporary alias (row in this case) and then run any indented instructions for each item.

The other new concept, element selection, is making use of a special language to find elements in the document. CSS selectors are normally used to add layout information to HTML elements and can be used to precisely pick an element out of a page. In this case (Line. 6) we’re selecting #tblEvents tr which will match each <tr> within the table element with the ID tblEvents (the hash simply signifies ID). Note that this will return a list of <tr> elements.

As can be seen on the next line (Line. 7), where we’re applying another selector to find any <a> (which is a hyperlink) within a <h4> (a title). Here we only want to look at a single element (there’s just one title per row), so we have to pop it off the top of the list returned by our selector with the .pop() function.

Note that some elements in the DOM contain actual text, i.e. text that is not part of any markup language, which we can access using the [element].text syntax seen on line 8. Finally, in line 9, we’re printing that text to the ScraperWiki console. If you hit run in your scraper, the smaller window should now start listing the event’s names from the IAEA web site.

You can now see a basic scraper operating: it downloads the web page, transforms it into the DOM form and then allows you to pick and extract certain content. Given this skeleton, you can try and solve some of the remaining problems using the ScraperWiki and Python documentation:

•    Can you find the address for the link in each event’s title?

•    Can you select the small box that contains the date and place by using its CSS class name and extract the element’s text?

•    ScraperWiki offers a small database to each scraper so you can store the results; copy the relevant example from their docs and adapt it so it will save the event titles, links and dates.

•    The event list has many pages; can you scrape multiple pages to get historic events as well?

As you’re trying to solve these challenges, have a look around ScraperWiki: there are many useful examples in the existing scrapers — and quite often, the data is pretty exciting, too. This way, you don’t need to start off your scraper from scratch: just choose one that is similar, fork it and adapt to your problem.

Source: http://datajournalismhandbook.org/1.0/en/getting_data_3.html

Friday, 29 May 2015

Web Scraping Services - A trending technique in data science!!!

Web scraping as a market segment is trending to be an emerging technique in data science to become an integral part of many businesses – sometimes whole companies are formed based on web scraping. Web scraping and extraction of relevant data gives businesses an insight into market trends, competition, potential customers, business performance etc.  Now question is that “what is actually web scraping and where is it used???” Let us explore web scraping, web data extraction, web mining/data mining or screen scraping in details.

What is Web Scraping?

Web Data Scraping is a great technique of extracting unstructured data from the websites and transforming that data into structured data that can be stored and analyzed in a database. Web Scraping is also known as web data extraction, web data scraping, web harvesting or screen scraping.

What you can see on the web that can be extracted. Extracting targeted information from websites assists you to take effective decisions in your business.

Web scraping is a form of data mining. The overall goal of the web scraping process is to extract information from a websites and transform it into an understandable structure like spreadsheets, database or csv. Data like item pricing, stock pricing, different reports, market pricing, product details, business leads can be gathered via web scraping efforts.

There are countless uses and potential scenarios, either business oriented or non-profit. Public institutions, companies and organizations, entrepreneurs, professionals etc. generate an enormous amount of information/data every day.

Uses of Web Scraping:

The following are some of the uses of web scraping:

•    Collect data from real estate listing

•    Collecting retailer sites data on daily basis

•    Extracting offers and discounts from a website.

•    Scraping job posting.

•    Price monitoring with competitors.

•    Gathering leads from online business directories – directory scraping

•    Keywords research

•    Gathering targeted emails for email marketing – email scraping

•    And many more.

There are various techniques used for data gathering as listed below:

•    Human copy-and-paste – takes lot of time to finish when data is huge

•    Programming the Custom Web Scraper as per the needs.

•    Using Web Scraping Softwares available in market.

Are you in search of web data scraping expert or specialist. Then you are at right place. We are the team of web scraping experts who could easily extract data from website and further structure the unstructured useful data to uncover patterns, and help businesses for decision making that helps in increasing sales, cover a wide customer base and ultimately it leads to business towards growth and success.

We have got expertise in all the web scraping techniques, scraping data from ajax enabled complex websites, bypassing CAPTCHAs, forming anonymous http request etc in providing web scraping services.

The web scraping is legal since the data is publicly and freely available on the Web. Smart WebTech can probably help you to achieve your scraping-based project goals. We would be more than happy to hear from you.

Source: http://webdata-scraping.com/web-scraping-trending-technique-in-data-science/

Tuesday, 26 May 2015

Endorsing web scraping

With more than 200 projects delivered, we stand firmly for new challenges every day. We have served above 60 clients and have won 86% of repeat business, as our main core is customer delight. Successive Softwares was approached by a client having a very exclusive set of requirements. For their project they required customised data mining, in real time to offer profitable information to their customers. Requirement stated scrapping of stock exchange data in real time so that end users can be eased in their marketing decisions. This posed as an ambitious task for us because it required processing of huge amount of data on a routine basis. We welcomed it as an event to evolve and do something aside of classic web application development.

We started with mock-ups, pursuing our very first step of IMPART Framework (Innovative Mock-up based Prototypes Analyzed to develop Reengineered Technology). Our team of experts thought of all the potential requirements with a flow and materialized it flawlessly into our mock up. It was a strenuous tasks but our excitement to do something which others still do not think of, filled our team with confidence and energy and things began to roll out perfectly. We presented our mock-up and statistics to the client as per our expectation client choose us, impressed with the efforts.

We started gathering requirements from client side and started to formulate design about the flow. The project required real time monitoring of stock exchange together with Prices, Market Turnover and then implement them into graphs. The front end part was an easy deal, we were already adept in playing with data the way required. The intractable task was to get the data. We researched and found that it can be achieved either with API or with Web Scarping and we moved with latter because of the limitations in API.

Web scraping is a compelling technique to get the required information straight out of the web page. Lack of documentation and not much forbearance forced us to make a slow start, but we kept all the requirements clear and new that we headed in the right direction.  We divided the scraping process into bits of different but related tasks. Firstly we needed to find the data which has to be captured, some of the problems faced were pagination and use of AJAX but with examination of endpoints in URL and the requests made when data is drawn, we surmounted these problems easily.

After targeting our data we focused on HTML parser which could extract data form all the targets. Using PHP we developed a parser extracting all the information and saving them in Database in a structured way.  After the required data present at our end we easily manipulated it into tables and charts and we used HIGHSTOCK for that. Entire Client side was developed in PHP with Zend frame work and we used MySQL 5.7 for server side.

During the whole development cycle our QA team insured we were delivering a quality product following all standards. We kept our client in the loop during the whole process keeping them informed about every step. Clients were also assured as they watched their project starting from scratch which developed into full fledge website. The process followed a strict time line releasing regular builds and implementing new improvements. We stood up to the expectation our client and delivered a product just as they visualized it to be.

Source: http://www.successivesoftwares.com/endorsing-web-scraping/

Monday, 25 May 2015

What you need to know about web scraping: How to understand, identify, and sometimes stop

NB: This is a gust article by Rami Essaid, co-founder and CEO of Distil Networks.

Here’s the thing about web scraping in the travel industry: everyone knows it exists but few know the details.

Details like how does web scraping happen and how will I know? Is web scraping just part of doing business online, or can it be stopped? And lastly, if web scraping can be stopped, should it always be stopped?

These questions and the challenge of web scraping are relevant to every player in the travel industry. Travel suppliers, OTAs and meta search sites are all being scraped. We have the data to prove it; over 30% of travel industry website visitors are web scrapers.

Google Analytics, and most other analytics tools do not automatically remove web scraper traffic, also called “bot” traffic, from your reports – so how would you know this non-human and potentially harmful traffic exists? You have to look for it.

This is a good time to note that I am CEO of a bot-blocking company called Distil Networks, and we serve the travel industry as well as digital publishers and eCommerce sites to protect against web scraping and data theft – we’re on a mission to make the web more secure.

So I am admittedly biased, but will do my best to provide an educational account of what we’ve learned to be true about web scraping in travel – and why this is an issue every travel company should at the very least be knowledgeable about.

Overall, I see an alarming lack of awareness around the prevalence of web scraping and bots in travel, and I see confusion around what to do about it. As we talk this through I’ll explain what these “bots” are, how to find them and how to manage them to better protect and leverage your travel business.

What are bots, web scrapers and site indexers? Which are good and which are bad?

The jargon around web scraping is confusing – bots, web scrapers, data extractors, price scrapers, site indexers and more – what’s the difference? Allow me to quickly clarify.

–> Bots: This is a general term that refers to non-human traffic, or robot traffic that is computer generated. Bots are essentially a line of code or a program that is created to perform specific tasks on a large scale.  Bots can include web scrapers, site indexers and fraud bots. Bots can be good or bad.

–> Web Scraper: (web harvesting or web data extraction) is a computer software technique of extracting information from websites (source, Wikipedia). Web scrapers are usually bad.

If your travel website is being scraped, it is most likely your competitors are collecting competitive intelligence on your prices. Some companies are even built to scrape and report on competitive price as a service. This is difficult to prove, but based on a recent Distil Networks study, prices seem to be main target.You can see more details of the study and infographic here.

One case study is Ryanair. They have been particularly unhappy about web scraping and won a lawsuit against a German company in 2008, incorporated Captcha in 2011 to stop new scrapers, and when Captcha wasn’t totally effective and Cheaptickets was still scraping, they took to the courts once again.

So Ryanair is doing what seems to be a consistent job of fending off web scrapers – at least after the scraping is performed. Unfortunately, the amount of time and energy that goes into identifying and stopping web scraping after the fact is very high, and usually this means the damage has been done.

This type of web scraping is bad because:

    Your competition is likely collecting your price data for competitive intelligence.

    Other travel companies are collecting your flights for resale without your consent.

    Identifying this type of web scraping requires a lot of time and energy, and stopping them generally requires a lot more.

Web scrapers are sometimes good

Sometimes a web scraper is a potential partner in disguise.

Meta search sites like Hipmunk sometimes get their start by scraping travel site data. Once they have enough data and enough traffic to be valuable they go to suppliers and OTAs with a partnership agreement. I’m naming Hipmunk because the Company is one of th+e few to fess up to site scraping, and one of the few who claim to have quickly stopped scraping when asked.

I’d wager that Hipmunk and others use(d) web scraping because it’s easy, and getting a decision maker at a major travel supplier on the phone is not easy, and finding legitimate channels to acquire supplier data is most definitely not easy.

I’m not saying you should allow this type of site scraping – you shouldn’t. But you should acknowledge the opportunity and create a proper channel for data sharing. And when you send your cease and desist notices to tell scrapers to stop their dirty work, also consider including a note for potential partners and indicate proper channels to request data access.

–> Site Indexer: Good.

Google, Bing and other search sites send site indexer bots all over the web to scour and prioritize content. You want to ensure your strategy includes site indexer access. Bing has long indexed travel suppliers and provided inventory links directly in search results, and recently Google has followed suit.

–> Fraud Bot: Always bad.

Fraud bots look for vulnerabilities and take advantage of your systems; these are the pesky and expensive hackers that game websites by falsely filling in forms, clicking ads, and looking for other vulnerabilities on your site. Reviews sections are a common attack vector for these types of bots.

How to identify and block bad bots and web scrapers

Now that you know the difference between good and bad web scrapers and bots, how do you identify them and how do you stop the bad ones? The first thing to do is incorporate bot-identification into your website security program. There are a number of ways to do this.

In-house

When building an in house solution, it is important to understand that fighting off bots is an arms race. Every day web scraping technology evolves and new bots are written. To have an effective solution, you need a dynamic strategy that is always adapting.

When considering in-house solutions, here are a few common tactics:

    CAPTCHAs – Completely Automated Public Turing Tests to Tell Computers and Humans Apart (CAPTCHA), exist to ensure that user input has not been generated by a computer. This has been the most common method deployed because it is simple to integrate and can be effective, at least at first. The problem is that Captcha’s can be beaten with a little workand more importantly, they are a nuisance to end usersthat can lead to a loss of business.

    Rate Limiting- Advanced scraping utilities are very adept at mimicking normal browsing behavior but most hastily written scripts are not. Bots will follow links and make web requests at a much more frequent, and consistent, rate than normal human users. Limiting IP’s that make several requests per second would be able to catch basic bot behavior.

    IP Blacklists - Subscribing to lists of known botnets & anonymous proxies and uploading them to your firewall access control list will give you a baseline of protection. A good number of scrapers employ botnets and Tor nodes to hide their true location and identity. Always maintain an active blacklist that contains the IP addresses of known scrapers and botnets as well as Tor nodes.

    Add-on Modules – Many companies already own hardware that offers some layer of security. Now, many of those hardware providers are also offering additional modules to try and combat bot attacks. As many companies move more of their services off premise, leveraging cloud hosting and CDN providers, the market share for this type of solution is shrinking.

    It is also important to note that these types of solutions are a good baseline but should not be expected to stop all bots. After all, this is not the core competency of the hardware you are buying, but a mere plugin.

Some example providers are:

    Impreva SecureSphere- Imperva offers Web Application Firewalls, or WAF’s. This is an appliance that applies a set of rules to an HTTP connection. Generally, these rules cover common attacks such as Cross-site Scripting (XSS) and SQL Injection. By customizing the rules to your application, many attacks can be identified and blocked. The effort to perform this customization can be significant and needs to be maintained as the application is modified.

    F5 – ASM – F5 offers many modules on their BigIP load balancers, one of which is the ASM. This module adds WAF functionality directly into the load balancer. Additionally, F5 has added policy-based web application security protection.

Software-as-a-service

There are website security software options that include, and sometimes specialize in web scraping protection. This type of solution, from my perspective, is the most effective path.

The SaaS model allows someone else to manage the problem for you and respond with more efficiency even as new threats evolve.  Again, I’m admittedly biased as I co-founded Distil Networks.

When shopping for a SaaS solution to protect against web scraping, you should consider some of the following factors:

•    Does the provider update new threats and rules in real time?

•    How does the solution block suspected non-human visitors?

•    Which types of proactive blocking techniques, such as code injections, does the provider deploy?

•    Which of the reactive techniques, such as rate limiting, are used?

•    Does the solution look at all of your traffic or a snapshot?

•    Can the solution block bots before they reach your infrastructure – and your data?

•    What kind of latency does this solution introduce?

I hope you now have a clearer understanding of web scraping and why it has become so prevalent in travel, and even more important, what you should do to protect and leverage these occurrences.

Source: http://www.tnooz.com/article/what-you-need-to-know-about-web-scraping-how-to-understand-identify-and-sometimes-stop/

Friday, 22 May 2015

Roles of Data Mining in Predicting, Tracking, and Containing the Ebola Outbreak

One of the most diverse continents on earth, Africa astounds the world with its vast savannas and great deserts and with its ancient architecture and modern cities, but Africa also has its share of tragedies and woes.

First identified in Democratic Republic of Congo’s Ebola River in 1976, Ebola Hemorrhagic Fever, a deadly zoonotic disease caused by Ebola virus, has been spreading in West Africa like a wildfire, engulfing everything on its way and creating widespread panic.

What has added insult to injury is the fact that the region has long endured the severe consequences of civil wars and social conflicts, and diseases like malaria, HIV/AIDS, yellow fever, cholera etc. have remained endemic to the region for a long time, causing tens of thousands of deaths every year.

Reportedly, Ebola has already killed at least 2,296 people, and there are about 3,685 confirmed cases of infection. Mortality rate has been swinging between 50% to 90%, depending on the quality of care and nutrition. According to WHO, the disease is likely to infect as much as 20,000 people before it is finally brought under control.

Crisis of Data

When it comes to healthcare management, clinical data is one of the key components. The value of data becomes more urgent in the emergency situation like that of West Africa. The more relevant data you have, the bigger picture you can create for taking aggressive measures. To use Peter Drucker’s words, “What gets measured gets managed.”

Factual data is a precondition for the doctors and health science experts working in the field for measuring and managing the situation. Data helps them to assess their successes or failures and reorient their actions. One of the important reasons why the fight against the Ebola outbreak is turning out into a losing battle is the insufficiency of data. Recently, Scientific American magazine wrote:

Right now, there are not even enough beds for sick patients nor enough data coming in to help track cases. Surveillance and tracking of those who were possibly exposed to Ebola remain inadequate.

In Science magazine, Gretchen Vogel suggests that the death toll of Ebola patients could be much higher than it is currently estimated. She says, “Exactly how many unrecorded Ebola deaths have occurred will never be known. Health officials are keeping track of suspected and probable cases, many of which are people who died before they could be tested.” Greg Slabodkin voices similar concerns in Health Data Management and points at the need of an integrated global biosurveillance system.

The absence of reliable and actionable data has badly hampered the efforts of combatting Ebola and providing proper medical care to the victims. CDC Director Dr. Tom Frieden describes it as a “fog-of-war situation”.

Data Mining: Bots Were the First to Warn

When you flip the coin, however, the situation is not completely bleak and desperate. Even if Big Data technologies have fallen short in predicting, tracking, and containing the epidemic, mainly due to the lack of data from the ground, it has not entirely failed. Data scientists and healthcare experts world over are making concerted efforts to know, track, and defeat the Ebola virus—some on the ground and some in their labs.

The increasing level of collaboration among the biomedical specialists, geneticist, virologists, and IT experts has definitely contributed to slow down the transmission of the virulent disease dubbed as “the plague of modern day”. Médecins Sans Frontières and Healthmap.org are the excellent examples in this regard.

    “By deploying bots and crawlers and by using advanced machine learning algorithms, the Boston-based global infectious disease surveillance system, HealthMap was able to predict and raise concerns about the spread of a mysterious hemorrhagic fever in West Africa nine days earlier than WHO did.”

Run by a team of 45 researchers, epidemiologists, and software developers at Boston Children’s Hospital, HealthMap mines data from search engine queries, social media platforms, health information sites, news reports and crowd-sourced information to track the transmission of the disease and provides an up-to-date timeline report with an interactive map, making it easier for the international health agencies to devise more effective action plans.

HealthMap serves as a good example of how crucial Big Data and data mining technologies could be for handling a healthcare emergency with fact-based and data-driven decisions.

Ebola Data

In their letter to The Lancet, research scientist Rashid Ansumana and his colleagues, working on Ebola in Sierra Leone, highlighted on the need of developing epidemic surveillance systems “by adopting new data-sharing technologies.” They wrote, “Emerging technologies can help early warning systems, outbreak response, and communication between health-care providers, wildlife and veterinary professionals, local and national health authorities, and international health agencies.”

Data-Driven Initiatives to Control the Outbreak

The era of systematic use of data for making better epidemiological predictions and for finding effective healthcare solutions began with Google Flue Trends in 2007, and the rapidly developing tools, technologies, and practices in Big Data have increased the roles of data in healthcare management.

There are a number of data-driven undertakings in progress which have contributed to counter the raging spread of Ebola. Brockmann Lab, run by Professor Dirk Brockmann and his colleagues, for example, has created a computer model for studying correlations and probabilities in the explosion of new cases of infection.

World Airtraffic  Transportation and Relative Import Risk, Source: Brockmann Lab

By applying computational and statistical models, they predict which areas, cities or regions in the world are at the risk of becoming the next Ebola epidemic hotspots. Similarly, Alessandro Vespignani–a network scientist, statistical physicist, and Northeastern professor–has been using human mobility network data to track the cases of Ebola infection and dissemination.

The Swedish NGO Flowminder Foundation has been aggregating, mining, and analyzing anonymized mobile phone location data and is developing national mobility estimates for West Africa to help the local and international agencies to combat the disease.

Meanwhile, innovations with Epi Info VHF, a software tool for case management, contact tracing, analysis and reporting services for Ebola and other hemorrhagic fever outbreaks and OpenStreetMap project for getting location information and spatial data of the affected areas have further helped to guide the intervention initiatives.

However, with all optimism about the growing roles of Big Data and data mining, we also need to be mindful about their limitations. Newsweek aptly puts: “While no media-trawling bot could ever replace national and international health agencies, such tools may be starting to help fill in some of the most gaping holes in real-time knowledge.”

Source: http://www.grepsr.com/blog/data-mining-tracking-ebola-outbreak/

Wednesday, 20 May 2015

The Features of the "Holographic Meridian Scraping Therapy"

1. Systematic nature: Brief introduction to the knowledge of viscera, meridians and points in traditional Chinese medicine, theory of holographic diagnosis and treatment; preliminary discussion of the treatment and health care mechanism of scraping therapy; systemat­ic introduction to the concrete methods of the holographic meridian scraping therapy; enumerating a host of therapeutic methods of scraping for disorders in both Chinese and Western medicine to em­body a combination of disease differentiation and syndrome differen­tiation; and summarizing the health care scraping methods. It is a practical handbook of gua sha.

2. Scientific: Applying the theories of Chinese and Western medicine to explain the health care and treatment mechanism and clinical applications of scraping therapy; introducing in detail the practical manipulations, items for attention, and indications and contraindications of the scraping therapy. Here are introduced repre­sentative diseases in different clinical departments, for which scrap­ing therapy has a better curative effect and the therapeutic methods of scraping for these diseases. Stress is placed on disease differentia­tion in Western medicine and syndrome differentiation in Chinese medicine, which should be combined in practical application.

Although there are more than 140,000 kinds of disease known to modem medicine, all diseases are related to dysfunction of the 14 meridians and internal organs, according to traditional Chinese med­icine. The object of scraping therapy is to correct the disharmony in the meridians and internal organs to recover the normal bodily func­tions. Thus, the scraping of a set of meridian points can be used to treat many diseases. In the section on clinical application only about 100 kinds of common diseases are discussed, although the actual number is much more than that. For easy reference the "Index of Diseases and Symptoms" is appended at the back of the book.

3. Practical: Using simple language and plenty of pictures and diagrams to guarantee that readers can easily leam, memorize and apply the principles of scraping therapy. As long as they master the methods explained in Chapter Three, readers without any medical knowledge can apply scraping therapy to themselves or others, with reference to the pictures in Chapters Four and Five. Besides scraping therapy, herbal treatment for each disease or syndrome is explained and may be used in combination with the scraping techniques.

Referring to the Holographic Meridian Hand Diagnosis and pic­tures at the back of the book will enhance accuracy of diagnosis and increase the effectiveness of scraping therapy.

Since the first publication and distribution of the Chinese edition of the book in July 1995, it has been welcomed by both medical specialists and lay people. In March 1996 this book was republished and adopted as a textbook by the School for Advanced Studies of Traditional Chinese Medicine affiliated to the Institute of the Acu­puncture and Moxibustion of the China Academy of Traditional Chi­nese Medicine.

In order to bring this health care method to more and more peo­ple and to make traditional Chinese medicine better appreciated They have modified and replenished this book in the spirit of constant im­provement. They hope that they may make a contribution to the health care of mankind with this natural therapy which has no side-effects and causes no pollution.

They hope that the Holographic Meridian Scraping Therapy can help the health and happiness of more and more families in the world.

Source: http://ezinearticles.com/?The-Features-of-the-Holographic-Meridian-Scraping-Therapy&id=5005031

Sunday, 17 May 2015

Dapper: The Scraper for the Common Man

Sometimes, especially with Web 2.0 companies, jargon can get a little bit out of hand. When someone says that a service allows you to "build an API for any website", it can be a bit difficult to understand what that really means.

However, put simply, Dapper is a scraper. Nothing more. It allows you to scrape content from a Web page and convert it into an XML document that can be easily used at another location. Though you won't find the words "scrape" or "scraper" anywhere on its site, that is exactly what it does.

What separates Dapper from other scrapers, both legitimate and illegitimate, is that it is both free and easy to use. In short, it makes the process of setting up the scraper simple enough for your every day Internet user. While one has never needed to be a geek to scrape RSS feeds, now the technologically impaired can scrape content from any site, even those that don't publish RSS feeds.

Though the TechCrunch profile of the service says that Dapper "aims to offer some legitimate, valuable services and set up a means to respect copyright" others are expressing concern about the potential for copyright violations, especially by spam bloggers.

Either way though, both the cause for concern and the potential dangers are very, very real.

What is Dapper

When a user goes to create a new "Dapp", he or she first needs to provide a series of links. These links must be on the same domain and in similar formats (IE: Google searches for different terms or different blog posts on a single site) for the service to work. Once the links have been defined, the user is then taken to a GUI where they pick out fields.

In a simple example where the user would create their own RSS feed for a blog, the post title might be one field, perhaps called "post title" and the body would be a second, perhaps called "post body". Dapper, much like the service social bookmarking Clipmarks, is able able to intelligently select blocks of text on a Web page, making it easy to ensure that the entire post body is selected and that extraneous information is omitted.

Once the fields have been selected, the user can then either create groups based upon those fields or simply save the dapp for future use. Once the Dapp has been saved, they can then use it to create both raw XML data, an RSS feed, a Google Gadget or any number of other output files that can be easily used in other services.

If you are interested in viewing a demo of Dapper, you can do so at this link.

There is little doubt that Dapper is an impressive service. It has taken the black art of scraping and made it into a simple, easy-to-use application that just about anyone can pick up. Though it might take a few tries to create a working Dapp, and certainly spending some time reading up on the service is required, most will find it easy to use, especially when compared to the alternatives.

However, it's this ease of use that has so many worried. Though scrapers have been around for many years, they have been either difficult to use or expensive. Dapper's power, when combined with its price tag and sheer ease of use, has many wondered that it might be ushering not a new age for the Web, but a new age for scrapers seeking to abuse other's hard work.

Cause for Concern

While being easy to use or free is not necessarily a problem in and of itself, in the rush to enable users to make an API for any site, they forget that many sites don't have one or restrict access to their APIs for very good reasons. RSS scraping is perhaps the biggest copyright issue bloggers face. It enables a plagiarist or spammer to not only steal all of the content on the blog right then, but also all of the content that will be posted in the future. This is a huge concern for many bloggers, especially those concerned about performing well in the search engines.

This has prompted many blogs to either disable their RSS feeds, truncate them or move them to a feed monitoring service such as Feedburner. However, if users can simply create their own RSS feeds with ease, these protections are circumvented and Webmasters lose control over their content.

Even with potential copyright abuse issues aside, Dapper creates potential problems for Webmasters. It bypasses the usual metrics that site owners have. A user who reads a site, or large portions of it, through a Dapp will not be counted in either the feed statistics or, depending on how Dapper is set up, even in the site's logs. All the while, the site is spending precious resources to feed the Dapp, taking money out of the Webmaster's pocket.

This combination of greater expense, less traffic and less accurate metrics can be dangerous to Webmasters who are working to get accurate traffic counts, visitor feedback or revenue.

Worse still, Dapp users also bypass any ads or other monetization tools that might be included in the site or the original RSS feed. This has a direct impact on sites trying to either turn a profit or, like this one, recoup some of the costs of hosting.

Despite this, it's the copyright concerns that reign supreme. Though screen scraping is not necessarily an evil technology, it is the sinister uses that have gotten the most attention and, sadly, seem to be the most common, especially in regards to blogs.

Even if the makers of Dapper is aiming to add copyright protection at a later date, the service is fully functional today and, though the FAQ states that they will "comply with any verified request by the lawful owner of the content to cease using his content," there is no opt-out procedure, no DMCA information on the United States Copyright Office Web site, no information on how to prevent Dapper from accessing your site and nothing but a contact page to get in touch with the makers of the service.

(Note: An email sent to the makers of Dapper on the 22nd has, as of yet, gone unanswered)

In addition to creating a potential copyright nightmare for Webmasters the site seems to be setting itself up for a lawsuit. In addition to not being DMCA Safe Harbor compliant (PDF), thus opening it up to copyright infringement lawsuits directly, the service seems to be vulnerable to a lawsuit under the MGM v. Grokster case, which found that service providers can be sued for infringement conducted by its users if they fail an "inducement" test. Sadly for Dapper, simply saying that it is the user's responsibility is not adequate to pass such a test, as Grokster found out. The failure to offer filtering technology and encouragement to create API's for "any" site are both likely strikes against Dapper in that regard.

To make matters more grim, copyright is not the only issue scrapers have to worry about, as one pair of lawyers put it, there are at least four different different legal theories that make scraping illegal including the computer fraud and abuse act, trespass against chattels and breach of contract. All in all, copyright is practically the least of Dapper's problems.

When it's all said and done, there is a lot of room for concern, not just on the part of Webmasters that might be affected by Dapper or its users, but also its makers. These intellectual property and other legal issues could easily sink the entire project.

Conclusions

It is obvious that a lot of time and effort went into creating Dapper. It's a very powerful, easy to use service that opens up interesting possibilities. I would hate to see the service used for ill and I would hate even worse to see all of the hard work that went into it lost because of intellectual property issues.

However, in its current incarnation, it seems likely that Dapper is going to encounter significant resistance on the IP front. There is little, if any protection or regard for intellectual property under the current system and, once bloggers find out that their content is being syndicated without their permission by the service, many are likely to start raising a fuss.

Even though Dapper has gotten rave reviews in the Web 2.0 community, it seems likely that traditional bloggers and other Web site owners will have serious objections to it. Those people, sadly, most likely have never heard of Dapper at this point.

With that being said, it is a service everyone needs to make note of. The one thing that is for certain is that it will be in the news again. The only question is what light will it be under.

Source: https://www.plagiarismtoday.com/2006/08/24/dapper-the-scraper-for-the-common-man/

Wednesday, 6 May 2015

Web Scraping Services Are Important Tools For Knowledge

Data extraction and web scraping techniques are important tools to find relevant data and information for personal or business use. Many companies, self-employed to copy and paste data from web pages. This process is very reliable, but very expensive as it is a waste of time and effort to get results. This is because the data collected and spent less resources and time required to collect these data are compared.

At present, several mining companies and their websites effective web scraping technique specifically for the thousands of pages of information developed culture can be traced. The information from a CSV file, database, XML file, or any other source with the required format is alameda. understanding of correlations and patterns in the data, so that policies can be designed to assist decision making. The information can also be stored for future reference.

The following are some common examples of data extraction process:

In order to rule through a government portal, citizens who are reliable for a given survey name removed.

Competitive pricing and data products include scraping websites

To access the web site or web design Stock download the videos and photos of scratching

Automatic Data Collection

It regularly collects data on a regular basis. Automated data collection techniques are very important because they find the company’s customer trends and market trends to help. By determining market trends, it is possible to understand customer behavior and predict the likelihood of the data will change.

The following are some examples of automated data collection:

Monitoring of special hourly rates for stocks

collects daily mortgage rates from various financial institutions

on a regular basis is necessary to check the weather

By using web scraping services, you can extract all data related to your business. Then analyzed the data to a spreadsheet or database can be downloaded and compared. Storing data in a database or in a required format and interpretation of the correlations to understand and makes it easier to identify hidden patterns.

Data extraction services, it is possible pricing, email, databases, profile data, and consistently to competitors for information about the data. Different techniques and processes designed to collect and analyze data, and has developed over time. Web Scraping for business processes that have beaten the market recently is one. It is a process from various sources such as websites and databases with large amounts of data provides.

Some of the most common methods used to scrape web crawling, text, fun, DOM analysis and include matching expression. After the process is only analyzers, HTML pages or meaning can be achieved through annotations. There are many different ways of scaling data, but more importantly is working toward the same goal. The main purpose of using web scraping service to retrieve and compile data in databases and web sites. In the business world is to remain relevant to the business process.

The central question about the relevance of web scraping contact. The process is relevant to the business world? The answer is yes. The fact that it is used by large companies in the world and many awards speaks derivatives.

Source: http://www.selfgrowth.com/articles/web-scraping-services-are-important-tools-for-knowledge

Thursday, 30 April 2015

Web Data Scraping - Scrape Business Data in no time

The Internet has evolved as one of the largest repositories of information for your business. You can design intelligent business processes to access a whole host of relevant information sources that will help you strategize, implement and deliver effective business objectives. Leveraging the benefits and usefulness of Web Scraping Tools is one such methodology that most businesses have adopted. Let us take a look at some of the ways it helps you easily scrape data relevant for your business.

Scraping for Business Information

Web Data Scraping is a technique, employed by most organizations. It involves the implementation of tools that help businesses extract unstructured data and convert them into usable business information. The focus of most scraping initiatives revolves around the organization’s need to glean the following information:

•    Competitor analysis to structure and strategist effectively

•    Price comparisons to price their products competitively

•    Customer feedbacks to enhance their product portfolio and provide customers with better brand experience   Market dynamics to help them identify areas of opportunities and threats

Using Scraping Tools

The abundance of information available on the Internet that helps you build up a productive business strategy can be easily extracted and leveraged to benefit your business. Tools have been designed with intuitive interface and intelligent algorithms which help in furthering this end.

Website Data Scraping tools are equipped for compatibility with a wide variety of applications so as to be able to explore a huge range of information sources.  These tools are fully automated and display the drag and drop facility ensuring users get to leverage the benefits of speed and convenience.

Data extraction tools are not only adept at extracting data, but are also equally well-equipped to combine relevant statistics from several social media platforms like YouTube, Twitter, and Google Analytics and so on. This helps businesses to analyse trends and plan strategies accordingly.

Challenges of the Data Scraping Process

Just as there is no dearth of data to be collected from the Web, there is also an abundance of web scraping tools to execute the data collection process. However, the capability of the tool to help you collect the appropriate data needs to be assured before you can proceed with its implementation. Some of the challenges faced by most businesses owing to their wrong choice of tools include the following:

•    Run-of-the-mill extraction tools are unable to scale up sufficiently in order to capture large volumes of data

•    Some tools are also unable to establish compatibility with most data sources and therefore do not provide a holistic data collection approach

•    Some tools are also not equipped to conduct an automatic detection of updates made to a data source and therefore end up providing inaccurate data.

In the light of all this it is essential that you identify the right tool for your need and select one that is embedded with an updated technology to help you achieve the following:

•    Ensure that you are able to access the appropriate data that you want

•    Help you structure it in the format you want

•    Provide quick and easy access to all available data sources no matter how complex

•    Run accurately and is a reliable source to help you churn out usable information.

Source: http://scraping-solutions.blogspot.in/2014_07_01_archive.html

Tuesday, 28 April 2015

Benefits of Scraping Data from Real Estate Website

With so much of growth in the recent times in real estate industry, it is likely that companies would want to create something different or use another method, so as to get desired benefits. Thus, it is best to go with the technological advancements and create real estate websites to get an edge over others in the industry. And to get all the information regarding website content, one can opt for real estate data scraping methods.

About real estate website scraping

Internet has become an important part of our daily lives and in industry marketing procedures too. With the use of website scraping one can easily scrape real estate listing from various websites. One just needs the help of experts and with proper software and tools; they can easily collect all the relevant real estate data from the required real estate websites and make a structured file containing the information. With internet becoming a valid platform for information and data submitted by numerous sources from around the globe, it is necessary to gather them all in one place for companies. In this way, the company can know what it lacks and work upon their strategies so as to gain profit and get to the top of the business world by taking one step at a time.

Uses of real estate website scraping

With proper use of website scraping one can collect and scrape the real estate listings which can help the company in the real estate market area. One can draw the attention of potential customers by designing the company strategies in such a way as contemplating the changing trends in the real estate global arena. All this is done with the help of the data collected from various real estate websites. With the help of proper website, one can collect the data and these get updated whenever new information gets into the web portal. In this way the company is kept updated about the various changes happening around the global market and thus, ensure in making plans regarding the company. This way one can plan ahead and take steps that can lead to the company gaining profits in future.

Thus, with the help of proper real estate website scraping one can be sure of getting all the information regarding real estate market. This way one can work upon making the company move as per the market trends and get a stronghold in real estate business.

Source: https://3idatascraping.wordpress.com/2013/09/25/benefit-of-scraping-data-from-real-estate-website/

Saturday, 25 April 2015

Scraping the Bottom of the Barrel - The Perils of Online Article Marketing

Many online article marketers so desperately wish to succeed, they want to dump corporate life and work for themselves out of their home. They decide they are going to create an online money making website. Therefore, they look around to see what everyone else is doing, and watch the methods others use to attract online buyers, and then they mimic their marketing, their strategies, and their business models.

Still, if you are copying what other people (less ethical people) are doing in online article marketing, those which are scraping the bottom of the barrel and using false advertising and misrepresentations, then all you are really doing is perpetuating distrust on the Internet. Therefore, you are hurting everyone, including people like me. You must realize that people like me don't appreciate that.

Let me give you a few examples of some of the things going on out there, thing that are being done by people who are ethically challenged. Far too many people write articles and then on their byline they send the Internet surfer or reader of the article to a website that has a squeeze page. The squeeze page has no real information on it, rather it asks for their name and e-mail address.

If the would-be Internet surfer is unwise enough to type in their name and email address they will be spammed by e-mail, receiving various hard-sell marketing pieces. Then, if the Internet Surfer does decide to put in their e-mail address, the website grants them access and then takes them to the page with information about what they are selling, or their online marketing "make you a millionaire" scheme.

Generally, these are five page sales letters, with tons of testimonials of people you've never heard of, and may not actually exist, and all sorts of unsubstantiated earnings claims of how much money you will make if you give them $39.35 by way of PayPal, for this limited offer "Now!" And they will send you an E-book with a strategic plan of how you can duplicate what they are doing. The reality is whatever they are doing is questionable to begin with.

If you are going to do online article marketing please don't scrape the bottom of the barrel, there's just too much competition down there from what I can see. Please consider all this.

Source: http://ezinearticles.com/?Scraping-the-Bottom-of-the-Barrel---The-Perils-of-Online-Article-Marketing&id=2710103

Wednesday, 22 April 2015

Hand Scraped Versus Machine Scraped Floors - The Distinction

In society today hardwood flooring has become the new must have. The days of carpet are gone, and if you have looked into bringing your home up to date with the styling of today you will have noticed by now that there are many different options. At times this may become very overwhelming, especially if you are not a hardwood specialist like most people are not. That is why this article is here to help you understand the many different options available to you.

The flooring type covered in this article is hand scraped flooring. This flooring type is a custom look flooring that is in very high demand in flooring marketplace, which is understandable because it is probably the most unique flooring there is. You can choose from many different types of wood species such as oak, maple, hickory, and most exotic species. There is computerized hand scraped that is when the manufacturer makes one piece of wood and places it into a computer that will cut thousands of different wood types with that one design. This type of process is also known as machine scraping. Hardwood floors employing this type of technology usually cost less, but most of the pieces look the same because the hand scraping is done by a machine.

Then you have actual hand scraped flooring that is done all by hand and takes more time and effort than machine scraped. This flooring is made custom each individual piece is scraped and notched in different ways, so every piece is unique. If you decide to purchase actual hand scraped flooring it will cost you more than mass produced computerized version but it will definitely be the more unique option. If you are the type of person who wants to have a one of kind floor then an actual hand scraped floor is the way to go.

So in conclusion hand scraped flooring is a great option for a lot of people. It comes in several different wood types, and several different colors. You can find flooring options for every budget and to meet every style. If having a custom floor in your home it may be important or not important on whether it be computer or done by hand. Most consumers cannot tell the difference between actual hand scraped flooring and machine scraped when just looking at a small sample. So when shopping at your local retailer ask the tough questions and find out if the manufacturer uses machine or authentic hand scrapping on their products.

To view your many options on hand scraped flooring please check out our website that covers all hardwood flooring options.

Source: http://ezinearticles.com/?Hand-Scraped-Versus-Machine-Scraped-Floors---The-Distinction&id=4151157

Saturday, 18 April 2015

Some Traps to know and avoid in Web Scraping

In the present day and age, web scraping comes across as a handy tool in the right hands. In essence, web scraping means quickly crawling the web for specific information, using pre-written programs. Scraping efforts are designed to crawl and analyze the data of entire websites, and saving the parts that are needed. Many industries have successfully used web scraping to create massive banks of relevant, actionable data that they use on a daily basis to further their business interests and provide better service to customers. This is the age of the Big Data, and web scraping is one of the ways in which businesses can tap into this huge data repository and come up with relevant information that aids them in every way.

Web scraping, however, does come with its own share of problems and roadblocks. With every passing day, a growing number of websites are trying to actively minimize the instance of scraping and protect their own data to stay afloat in today’s situation of immense competition. There are several other complications which might arise and several traps that can slow you down during your web scraping pursuits. Knowing about these traps and how to avoid them can be of great help if you want to successfully accomplish your web scraping goals and get the amount of data that you require.

Complications in Web Scraping

Over time, various complications have risen in the field of web scraping. Many websites have started to get paranoid about data duplication and data security problems and have begun to protect their data in many ways. Some websites are not generally agreeable to the moral and ethical implications of web scraping, and do not want their content to be scraped. There are many places where website owners can set traps and roadblocks to slow down or stop web scraping activities. Major search engines also have a system in place to discourage scraping of search engine results. Last but not the least, many websites and web services announce a blanket ban on web scraping and say the same in their terms and conditions, potentially leading to legal issues in the event of any scraping.

Here are some of the most common complications that you might face during your web scraping efforts which you should be particularly aware about –

•    Some locations on the intranet might discourage web scraping to prevent data duplication or data theft.

•    Many websites have in place a number of different traps to detect and ban web scraping tools and programs.

•    Certain websites make it clear in their terms and conditions that they consider web scraping an infringement of their privacy and might even consider legal redress.

•    In a number of locations, simple measures are implemented to prevent non-human traffic to websites, making it difficult for web scraping tools to go on collecting data at a fast pace.

To surmount these difficulties, you need a deeper and more insightful understanding of the way web scraping works and also the attitude of website owners towards web scraping efforts. Most major issues can be subverted or quietly avoided if you maintain good working practice during your web scraping efforts and understand the mentality of the people whose sites you are scraping.

Common Problems

With automated scraping, you might face a number of common problems. The behavior of web scraping programs or spiders presents a certain picture to the target website. It then uses this behavior to distinguish between human users and web scraping spiders. Depending on that information, a website may or may not employ particular web scraping traps to stop your efforts. Some of the commonly employed traps are –

Crawling Pattern Checks – Some websites detect scraping activities by analyzing crawling patterns. Web scraping robots follow a distinct crawling pattern which incorporates repetitive tasks like visiting links and copying content. By carefully analyzing these patterns, websites can determine that they are being caused by a web scraping robot and not a human user, and can take preventive measures.

Honeypots – Some websites have honeypots in their webpages to detect and block web scraping activities. These can be in the form of links that are not visible to human users, being disguised in a certain way. Since your web crawler program does not operate the way a human user does, it can try and scrape information from that link. As a result, the website can detect the scraping effort and block the source IP addresses.

Policies – Some websites make it absolutely apparent in their terms and conditions that they are particularly averse to web scraping activities on their content. This can act as a deterrent and make you vulnerable against possible ethical and legal implications.

Infinite Loops – Your web scraping program can be tricked into visiting the same URL again and again by using certain URL building techniques.

These traps in web scraping can prove to be detrimental to your efforts and you need to find innovative and effective ways to surpass these problems. Learning some web crawler tips to avoid traps and judiciously using them is a great way of making sure that your web scraping requirements are met without any hassle.

What you can do


The first and foremost rule of thumb about web scraping is that you have to make your efforts as inconspicuous as possible. This way you will not arouse suspicion and negative behavior from your target websites. To this end, you need a well-designed web scraping program with a human touch. Such a program can operate in flexible ways so as to not alert website owners through the usual traffic criteria used to spot scraping tools.

Some of the measures that you can implement to ensure that you steer clear of common web scraping traps are –

•    The first thing that you need to do is to ascertain if a particular website that you are trying to scrape has any particular dislike towards web scraping tools. If you see any indication in their terms and conditions, tread cautiously and stop scraping their website if you receive any notification regarding their lack of approval. Being polite and honest can help you get away with a lot.

•    Try and minimize the load on every single website that you visit for scraping. Putting a high load on websites can alert them towards your intentions and often might cause them to develop a negative attitude. To decrease the overall load on a particular website, there are many techniques that you can employ.

•    Start by caching the pages that you have already crawled to ensure that you do not have to load them again.

•    Also store the URLs of crawled pages.

•    Take things slow and do not flood the website with multiple parallel requests that put a strain on their resources.

•    Handle your scraping in gentle phases and take only the content you require.

•    Your scraping spider should be able to diversify its actions, change its crawling pattern and present a polymorphic front to websites, so as not to cause an alarm and put them on the defensive.

•    Arrive at an optimum crawling speed, so as to not tax the resources and bandwidth of the target website. Use auto throttling mechanisms to optimize web traffic and put random breaks in between page requests, with the lowest possible number of concurrent requests that you can work with.

•    Use multiple IP addresses for your scraping efforts, or take advantage of proxy servers and VPN services. This will help to minimize the danger of getting trapped and blacklisted by a website.

•    Be prepared to understand the respect the express wishes and policies of a website regarding web scraping by taking a good look at the target ‘robots.txt’ file. This file contains clear instructions on the exact pages that you are allowed to crawl, and the requisite intervals between page requests. It might also specify that you use a pre-determined user agent identification string that classifies you as a scraping bot. adhering to these instructions minimizes the chance of getting on the bad side of website owners and risking bans.

Use an advanced tool for web scraping which can store and check data, URLs and patterns. Whether your web scraping needs are confined to one domain or spread over many, you need to appreciate that many website owners do not take kindly to scraping. The trick here is to ensure that you maintain industry best practices while extracting data from websites. This prevents any incident of misunderstanding, and allows you a clear pathway to most of the data sources that you want to leverage for your requirements.

Hope this article helps in understanding the different traps and roadblocks that you might face during your web scraping endeavors. This will help you in figuring out smart, sensible ways to work around them and make sure that your experience remains smooth. This way, you can keep receiving the important information that you need with web scraping. Following these basic guidelines can help you prevent getting banned or blacklisted and stay in the good books of website owners. This will allow you continue with your web scraping activities unencumbered.

Source: https://www.promptcloud.com/blog/some-traps-to-avoid-in-web-scraping/

Tuesday, 7 April 2015

Thoughts on scraping SERPs and APIs

Google says that scraping keyword rankings is against their policy from what I've read. Bummer. We comprise a lot of reports and manual finding and entry was a pain. Enter Moz! We still manually check and compare, but it's nice having that tool. I'm confused now though about practices and getting SERPs in an automated way. Here are my questions

  1.     Is it against policy to get SERPs from an automated method? If that is the case, isn't Moz breaking this policy with it's awesome keyword tracker?
  2.     If it's not, and we wanted to grab that kind of data, how would we do it? Right now, Moz's API doesn't offer this data. I thought Raven Tools at one point offered this, but they don't now from what I've read. Are there any APIs out there that we can grab this data and do what we want with it? (let's day build our own dashboard)?

Thanks for any clarification and input!

Source: http://moz.com/community/q/thoughts-on-scraping-serps-and-apis

Monday, 30 March 2015

Why Data mining is still a powerful tool to help companies

The ability of Data mining technologies to sift through volumes of data and arrive at predictive information to empower businesses can in no way be undermined. The advent of new techniques and technologies has made the practice more affordable by organizations both big and small. The new technologies have not only helped in reducing the overhead costs of running the data mining exercise, but also simplified the practice making it more accessible for smaller and mid-size companies employ it in their organizational processes. In the current era, information is power and Web Data Mining Technologies are stretching the limits of their capabilities to help organizations acquire that power.

Data Mining Ensures Better Business Decisions

 Organizations usually have access to large databases which store millions of historical data record. Traditional practices of hands-on analysis of patterns and trends of all available data proved to be too cumbersome to be pursued and were soon replaced with shorter and more selective data sets. This caused hidden patterns to remain hidden thus blocking off possibilities for organizations to grow and evolve. However, the advent of Data Mining as a technology that automates the identification of complex patterns in those databases changed all that. Organizations, now, are engaging in a thorough analysis of massive data sets and are moving ahead to extracting meanings and patterns from them. The analysis helps to unlock the hidden patterns and enables organizations to predict future market behavior and be geared with proactive and knowledge driven decisions for the benefit of their business.

Data Mining provides Fraud Detection Capabilities

 Loss in Revenue has definite adverse impacts on a company’s morale. It slackens productivity and slows down their growth. Fraud is one of the common malpractices that eat into the organization’s revenue earning capability. Data Mining helps to prevent this and ensures a steady rise in their revenue graph. Data mining models can be built to predict consumer behavior patterns which help in effectively detecting fraud.

Data Mining Evolves to be Business Focused
 Traditional Data Mining technologies were focused more on algorithms and statistics on delivering results which, though good failed to address the business issues appropriately. The new age data mining technologies, however, have evolved to become business focused. They understand the needs that drive the business and utilize the strong statistical algorithms built into their system to explore, collect, analyze and summarize data that can be made to work for better health of the business.

Data Mining has become more Granular
 As technology evolves, organizations leverage the benefits it generates. Integration of fundamental data mining functionalists into database engines is one such innovation that has helped organizations to thoroughly benefit from its effect. Mining data from within the database instead of Web Data Extraction the data and then analyzing it saves valuable time for the organization. Moreover, as organizations can now drill down into more granular levels of the data therefore there is a higher possibility of ensuring accuracy. Moreover, as data mining software now have a more direct access to the data sets within the database, there is a higher possibility of ensuring a smoother workflow and hence a better performance.

Conclusion
 Data mining, though capable of helping organizations generate good things, however, needs to be used intelligently. It has to be strongly aligned with the organization’s goals and principles in order to ensure appropriate performance that would strengthen the organization adequately.

We are leading Webdatascraping.us company and enough capable to extract website information, review scraping, contact information scraping, business directory scraping, email list scraping etc.

Friday, 27 March 2015

The Great Advantages of Data Extraction Software – Why a Company Needs it?

Data extraction is being a huge problem for large corporate companies and businesses, which needs to be handled technically and safely. There are many different approaches used for data extraction from web and various tools have designed to solve certain problems.

Moreover, algorithms and advanced techniques were also developed for data extraction. In this array, the Data Extraction Software is widely used to extract information from web as designed.

Data Extraction Software:

 This is a program specifically designed to collect and organize the information or data from the website or webpage and reformat them.

Uses of Data Extraction Software:

Data extraction software can be used at various levels including social web and enterprise levels.

Enterprise Level: Data extraction techniques at the enterprise level are used as the prime tool to perform analysis of the data in business process re-engineering, business system and in competitive intelligence system.

Social Web Level: This type of web data extraction techniques is widely used for gathering structured data in large amount that are continuously generated by Web.2.0, online social network users and social media. 

To specify other uses of Data Extraction software:
  •     It helps in assembling stats for the business plans
  •     It helps to gather data from public or government agencies
  •     It helps to collect data for legal needs

Does the Data Extraction Software make Your Job Simple?

The usage of data extraction software has been widely appreciated by many large corporate companies. In this array, here are a few points to favor the usage of the software;
  •     Data toolbar consists of web scraping tool to automate the process of web data extraction
  •     Point data fields from which the data need to be collected and the tool will do the rest
  •     There are no technical skills required to use data tool
  •     It is possible to extract a huge number of data records in just a few seconds

Benefits of Data Extraction Software:


This data extraction software benefits many computer users. Here follows a few remarkable benefits of the software;
  •     It can extract detailed data like description, name, price, image and more as defined from a website
  •     It is possible to create projects in the extractor and extract required information automatically from the site without the user’s interference
  •     The process saves huge effort and time
  •     It makes extracting data from several websites easy like online auctions, online stores, real estate portal, business directories, shopping portals and more
  •     It makes it possible to export extracted data to various formats like Microsoft Excel, HTML, SQL, XML, Microsoft Access, MySQL and more
  •     This will allow processing and analyzing data in any custom format

Who majorly Benefits from Data Extraction Software?

Any computer user benefit from this data extraction software, however, it is majorly benefiting users like;
  •     Business men to collect market figures, real estate data and product pricing data
  •     Book lovers to extract information about titles, authors, images, descriptions prices and more
  •     Collectors and hobbyists to extract auction and betting information
  •     Journalists to extract article and news from new websites
  •     Travelers to extract information about holiday places, vacations, prices, images and more
  •     Job seekers to extract information about jobs available, employers and more

Websitedatascraping.com is enough capable to web data scraping, website data scraping, web scraping services, website scraping services, data scraping services, product information scraping and yellowpages data scraping.