Sunday, 30 November 2014

Web Scraping’s 2013 Review – part 2

As promised we came back with the second part of this year’s web scraping review. Today we will focus not only on events of 2013 that regarded web scraping but also Big data and what this year meant for this concept.

First of all, we could not talked about the conferences in which data mining was involved without talking about TED conferences. This year the speakers focused on the power of data analysis to help medicine and to prevent possible crises in third world countries. Regarding data mining, everyone agreed that this is one of the best ways to obtain virtual data.

Also a study by MeriTalk  a government IT networking group, ordered by NetApp showed this year that companies are not prepared to receive the informational revolution. The survey found that state and local IT pros are struggling to keep up with data demands. Just 59% of state and local agencies are analyzing the data they collect and less than half are using it to make strategic decisions. State and local agencies estimate that they have just 46% of the data storage and access, 42% of the computing power, and 35% of the personnel they need to successfully leverage large data sets.

Some economists argue that it is often difficult to estimate the true value of new technologies, and that Big Data may already be delivering benefits that are uncounted in official economic statistics. Cat videos and television programs on Hulu, for example, produce pleasure for Web surfers — so shouldn’t economists find a way to value such intangible activity, whether or not it moves the needle of the gross domestic product?

We will end this article with some numbers about the sumptuous growth of data available on the internet.  There were 30 billion gigabytes of video, e-mails, Web transactions and business-to-business analytics in 2005. The total is expected to reach more than 20 times that figure in 2013, with off-the-charts increases to follow in the years ahead, according to researches conducted by Cisco, so as you can see we have good premises to believe that 2014 will be at least as good as 2013.

Source:http://thewebminer.com/blog/2013/12/

Thursday, 27 November 2014

Scraping SSL Labs Server Test Results With R

    NOTE: Qualys allows automated access to their SSL Server Test site in their T&C’s, and the R fucntion/script provided here does its best to adhere to their guidelines. However, if you launch multiple scripts at one time and catch their attention you will, no doubt, be banned.

This post will show you how to do some basic web page data scraping with R. To make it more palatable to those in the security domain, we’ll be scraping the results from Qualys’ SSL Labs SSL Test site by building an R function that will:

    fetch the contents of a URL with RCurl
    process the HTML page tags with R’s XML library
    identify the key elements from the page that need to be scraped
    organize the results into a usable R data structure

You can skip ahead to the code at the end (or in this gist) or read on for some expository that isn’t in the code’s comments.

Setting up the script and processing flow

We’ll need some assistance from three R packages to perform the scraping, processing and transformation tasks:

library(RCurl) # scraping
library(XML)   # XML (HTML) processing
library(plyr)  # data transformation

If you poke at the SSL Test site with a few different URLs, you’ll see there are three primary inputs to the GET request we’ll need to issue:

    d (the domain)
    s (the IP address to test)
    ignoreMismatch (which we’ll leave as ‘on‘)

You’ll also see that there’s often a delay between issuing a request and getting the results, so we’ll need to build in a GET+check-loop (like the javascript on the page does automagically). Finally, when the results are eventually displayed they are (at least for this example) usually either "Overall Rating" or "Assessment" and, we’ll use that status result in our tests for what to return.

We’ll account for the domain and IP address in the function parameters along with the amount of time we should pause between GET+check attempts. It’s also a good idea to provide a way to pass in any extra curl options (e.g. in the event folks are behind a proxy server and need to input that to make the requests work). We’ll define the function with some default parameters:

get_rating <- function(site="rud.is", ip="", pause=5, curl.opts=list()) {

}

This definition says that if we just call get_rating(), it will

    default to using "rud.is" as the domain (you can pick what you want in your implementation)
    not supply an IP address (which the script will then have to lookup with nsl)
    will pause 5s between GET+check attempts
    pass no extra curl options

Getting into the details

For the IP address logic, we’ll have to test if we passed in an an address string and perform a lookup if not:

# try to resolve IP if not specified; if no IP can be found, return
# a "NA" data frame

  if (ip == "") {

    tmp <- nsl(site)
    if (is.null(tmp)) {
      return(data.frame(site=site, ip=NA, Certificate=NA,
                        Protocol.Support=NA, Key.Exchange=NA,
                        Cipher.Strength=NA)) }
    ip <- tmp
  }

(don’t worry about the return(...) part yet, we’ll get there in a bit).

Once we have an IP address, we’ll need to make the call to the ssllabs.com test site and perform the check loop:

# get the contents of the URL (will be the raw HTML text)
# build the URL with sprintf

rating.dat <- getURL(sprintf("https://www.ssllabs.com/ssltest/analyze.html?d=%s&s=%s&ignoreMismatch=on", site, ip), .opts=curl.opts)

# while we don't find some indication of a completed request,
# pause and try again

while(!grepl("(Overall Rating|Assessment failed)", rating.dat)) {
  Sys.sleep(pause)
  rating.dat <- getURL(sprintf("https://www.ssllabs.com/ssltest/analyze.html?d=%s&s=%s&ignoreMismatch=on", site, ip), .opts=curl.opts)
}

We can then start making some decisions based on the results:

# if the assessment failed, return a data frame of NA's

if (grepl("Assessment failed", rating.dat)) {

  return(data.frame(site=site, ip=NA, Certificate=NA,
                    Protocol.Support=NA, Key.Exchange=NA,
                    Cipher.Strength=NA))
}

# otherwise, parse the resultant HTML

x <- htmlTreeParse(rating.dat, useInternalNodes = TRUE)

Unfortunately, the results are not “consistent”. While there are plenty of uniquely identifiable <div>s, there are enough differences between runs that we have to be a bit generic in our selection of data elements to extract. I’ll leave the view-source: of a result as an exercise to the reader. For this example, we’ll focus on extracting:

        the overall rating (A-F)
        the “Certificate” score
        the “Protocol Support” score
        the “Key Exchange” score
        the “Cipher Strength” score

There are plenty of additional fields to extract, but you should be able to extrapolate and grab what you want to from the rest of the example.

Extracting the results

We’ll need to delve into XPath to extract the <div> values. We’ll use the xpathSApply function to perform this task. Since there sometimes is a <span> tag within the <div> for the rating and since the rating has a class tag to help identify which color it should be, we use a starts-with selection parameter to just get anything beginning with rating_. If it returns an R list structure, we know we have the one with a <span> element, so we re-issue the call with that extra XPath component.

rating <- xpathSApply(x,"//div[starts-with(@class,'rating_')]/text()", xmlValue)

if (class(rating) == "list") {

  rating <- xpathSApply(x,"//div[starts-with(@class,'rating_')]/span/text()", xmlValue)
}

For the four attributes (and values) we’ll be extracting, we can use the getNodeSet call which will give us all of them into a structure we can process with xpathSApply

labs <- getNodeSet(x,"//div[@class='chartBody']/div[@class='chartRow']/div[@class='chartLabel']")

vals <- getNodeSet(x,"//div[@class='chartBody']/div[@class='chartRow']/div[starts-with(@class,'chartValue')]")

# convert them to vectors

labs <- xpathSApply(labs[[1]], "//div[@class='chartLabel']/text()", xmlValue)

vals <- xpathSApply(vals[[1]], "//div[starts-with(@class,'chartValue')]/text()", xmlValue)

At this point, labs will be a vector of label names and vals will be the corresponding values. We’ll put them, the original domain and the IP address into a data frame:

# rbind will turn the vector into row elements, with each

# value being in a column

rating.result <- data.frame(site=site, ip=ip,

                            rating=rating, rbind(vals),
                            row.names=NULL)

# we use the labs vector as the column names (in the right spot)    

colnames(rating.result) <- c("site", "ip", "rating",

                              gsub(" ", "\\.", labs))

and return the result:
return(rating.result)
Finishing up

If we run the whole function on one domain we’ll get a one-row data frame back as a result. If we use ldply from the plyr package to run the get_rating function repeatedly on a vector of domains, it will combine them all into one whole data frame. For example:

sites <- c("rud.is", "stackoverflow.com", "er-ant.com")

ratings <- ldply(sites, get_rating)

ratings

##                site              ip rating Certificate Protocol.Support Key.Exchange Cipher.Strength

## 1            rud.is  184.106.97.102      B         100               70           80              90

## 2 stackoverflow.com 198.252.206.140      A         100               90           80              90

## 3        er-ant.com            <NA>   <NA>        <NA>             <NA>         <NA>            <NA>

There are many tweaks you can make to this function to extract more data and perform additional processing. If you make some of your own changes, you’re encouraged to add to the gist (link above & below) and/or drop a note in the comments.

Hopefully you’ve seen how well-suited R is for this type of operation and have been encouraged to use it in your next attempt at some site/data scraping.

library(RCurl)
library(XML)
library(plyr)

 #' get the Qualys SSL Labs rating for a domain+cert

#'

#' @param site domain to test SSL configuration of

#' @param ip address of \code{site} (will resolve it and take\cr

#' first response if not specified, but that may not always work as you expect)

#' @param hide.results ["on"|"off"] should the results show up in the SSL Labs history (default "on")

#' @param pause timeout between tries (default 5s)

#' @param curl.opts options to pass to \code{getURL} i.e. proxy setting

#' @return data frame of results

#'

  get_rating <- function(site="rud.is", ip="", hide.results="on", pause=5, curl.opts=list()) {

# try to resolve IP if not specified; if no IP can be found, return

# a "NA" data frame

if (ip == "") {

tmp <- nsl(site)

if (is.null(tmp)) { return(data.frame(site=site, ip=NA, Certificate=NA,

Protocol.Support=NA, Key.Exchange=NA, Cipher.Strength=NA)) }

ip <- tmp

}

# need to let it actually process the certificate if not already cached

rating.dat <- getURL(sprintf("https://www.ssllabs.com/ssltest/analyze.html?d=%s&s=%s&ignoreMismatch=on&hideResults=%s", site, ip, hide.results), .opts=curl.opts)

while(!grepl("(Overall Rating|Assessment failed)", rating.dat)) {

Sys.sleep(pause)

rating.dat <- getURL(sprintf("https://www.ssllabs.com/ssltest/analyze.html?d=%s&s=%s&ignoreMismatch=on&hideResults=%s", site, ip, hide.results), .opts=curl.opts)

}

if (grepl("Assessment failed", rating.dat)) {

return(data.frame(site=site, ip=NA, Certificate=NA,

Protocol.Support=NA, Key.Exchange=NA, Cipher.Strength=NA))

}

x <- htmlTreeParse(rating.dat, useInternalNodes = TRUE)

# sometimes there is a <span ...> tag in the <div>, which will result in an

# empty list() object being returned. we check for that and handle it

# appropriately.

rating <- xmlValue(x[["//div[starts-with(@class,'rating_')]/text()"]])

if (class(rating) == "list") {

rating <- xmlValue(x[["//div[starts-with(@class,'rating_')]/span/text()"]])

}

# extract the XML objects for the ratings labels & values

labs <- getNodeSet(x,"//div[@class='chartBody']/div[@class='chartRow']/div[@class='chartLabel']")

vals <- getNodeSet(x,"//div[@class='chartBody']/div[@class='chartRow']/div[starts-with(@class,'chartValue')]")

# convert them to vectors

labs <- xpathSApply(labs[[1]], "//div[@class='chartLabel']/text()", xmlValue)

vals <- xpathSApply(vals[[1]], "//div[starts-with(@class,'chartValue')]/text()", xmlValue)

# make them into a data frame

rating.result <- data.frame(site=site, ip=ip, rating=rating, rbind(vals), row.names=NULL)

colnames(rating.result) <- c("site", "ip", "rating", gsub(" ", "\\.", labs))

return(rating.result)

}

 sites <- c("rud.is", "stackoverflow.com", "er-ant.com")

ratings <- ldply(sites, get_rating)

ratings

## site ip rating Certificate Protocol.Support Key.Exchange Cipher.Strength

## 1 rud.is 184.106.97.102 B 100 70 80 90

## 2 stackoverflow.com 198.252.206.140 A 100 90 80 90

## 3 er-ant.com <NA> <NA> <NA> <NA> <NA> <NA>

Source: http://www.r-bloggers.com/scraping-ssl-labs-server-test-results-with-r/

Wednesday, 26 November 2014

Web Scraping Tools for Non-developers

I recently spoke with a resource-limited organization that is investigating government corruption and wants to access various public datasets to monitor politicians and law firms. They don’t have developers in-house, but feel pretty comfortable analyzing datasets in CSV form. While many public datasources are available in structured form, some sources are hidden in what us data folks call the deep web. Amazon is a nice example of a deep website, where you have to enter text into a search box, click on a few buttons to narrow down your results, and finally access relatively structured data (prices, model numbers, etc.) embedded in HTML. Amazon has a structured database of their products somewhere, but all you get to see is a bunch of webpages trapped behind some forms.

A developer usually isn’t hindered by the deep web. If we want the data on a webpage, we can automate form submissions and key presses, and we can parse some ugly HTML before emitting reasonably structured CSVs or JSON. But what can one accomplish without writing code?

This turns out to be a hard problem. Lots of companies have tried, to varying degrees of success, to build a programmer-free interface for structured web data extraction. I had the pleasure of working on one such project, called Needlebase at ITA before Google acquired it and closed things down. David Huynh, my wonderful colleague from grad school, prototyped a tool called Sifter that did most of what one would need, but like all good research from 2006, the lasting impact is his paper rather than his software artifact.

Below, I’ve compiled a list of some available tools. The list comes from memory, the advice of some friends that have done this before, and, most productively, a question on Twitter that Hilary Mason was nice enough to retweet.

The bad news is that none of the tools I tested would work out of the box for the specific use case I was testing. To understand why, I’ll break down the steps required for a working web scraper, and then use those steps to explain where various solutions broke down.

The anatomy of a web scraper

There are three steps to a structured extraction pipeline:

    Authenticate yourself. This might require logging in to a website or filling out a CAPTCHA to prove you’re not…a web scraper. Because the source I wanted to scrape required filling out a CAPTCHA, all of the automated tools I’ll review below failed step 1. It suggests that as a low bar, good scrapers should facilitate a human in the loop: automate the things machines are good at automating, and fall back to a human to perform authentication tasks the machines can’t do on their own.

    Navigate to the pages with the data. This might require entering some text into a search box (e.g., searching for a product on Amazon), or it might require clicking “next” through all of the pages that results are split over (often called pagination). Some of the tools I looked at allowed entering text into search boxes, but none of them correctly handled pagination across multiple pages of results.

    Extract the data. On any page you’d like to extract content from, the scraper has to help you identify the data you’d like to extract. The cleanest example of this that I’ve seen is captured in a video for one of the tools below: the interface lets you click on some text you want to pluck out of a website, asks you to label it, and then allows you to correct mistakes it learns how to extract the other examples on the page.

As you’ll see in a moment, the steps at the top of this list are hardest to automate.

What are the tools?

Here are some of the tools that came highly recommended, and my experience with them. None of those passed the CAPTCHA test, so I’ll focus on their handling of navigation and extraction.

    Web Scraper is a Chrome plugin that allows you to build navigable site maps and extract elements from those site maps. It would have done everything necessary in this scenario, except the source I was trying to scrape captured click events on links (I KNOW!), which tripped things up. You should give it a shot if you’d like to scrape a simpler site, and the youtube video that comes with it helps get around the slightly confusing user interface.

    import.io looks like a clean webpage-to-api story. The service views any webpage as a potential data source to generate an API from. If the page you’re looking at has been scraped before, you can access an API or download some of its data. If the page hasn’t been processed before, import.io walks you through the process of building connectors (for navigation) or extractors (to pull out the data) for the site. Once at the page with the data you want, you can annotate a screenshot of the page with the fields you’d like to extract. After you submit your request, it appears to get queued for extraction. I’m still waiting for the data 24 hours after submitting a request, so I can’t vouch for the quality, but the delay suggests that import.io uses crowd workers to turn your instructions into some sort of semi-automated extraction process, which likely helps improve extraction quality. The site I tried to scrape requires an arcane combination of javascript/POST requests that threw import.io’s connectors for a lo
op, and ultimately made it impossible to tell import.io how to navigate the site. Despite the complications, import.io seems like one of the more polished website-to-data efforts on this list.

    Kimono was one of the most popular suggestions I got, and is quite polished. After installing the Kimono bookmarklet in your browser, you can select elements of the page you wish to extract, and provide some positive/negative examples to train the extractor. This means that unlike import.io, you don’t have to wait to get access to the extracted data. After labeling the data, you can quickly export it as CSV/JSON/a web endpoint. The tool worked seamlessly to extract a feed from the Hackernews front page, but I’d imagine that failures in the automated approach would make me wish I had access to import.io’s crowd workers. The tool would be high on my list except that navigation/pagination is coming soon, and will ultimately cost money.

    Dapper, which is now owned by Yahoo!, provides about the same level of scraping capabilities as Kimono. You can extract content, but like Kimono it’s unclear how to navigate/paginate.

    Google Docs was an unexpected contender. If the data you’re extracting is in an HTML table/RSS Feed/CSV file/XML document on a single webpage with no navigation/authentication, you can use one of the Import* functions in Google Docs. The IMPORTHTML macro worked as advertised in a quick test.

    iMacros is a tool that I could imagine solves all of the tasks I wanted, but costs more than I was willing to pay to write this blog post. Interestingly, the free version handles the steps that the other tools on this list don’t do as well: navigation. Through your browser, iMacros lets you automate filling out forms, clicking on “next” links, etc. To perform extraction, you have to pay at least $495.

    A friend has used Screen-scraper in the past with good outcomes. It handles navigation as well as extraction, but costs money and requires a small amount of programming/tokenization skills.

    Winautomation seems cool, but it’s only available for Windows, which was a dead end for me.

So that’s it? Nothing works?

Not quite. None of these tools solved the problem I had on a very challenging website: the site clearly didn’t want to be crawled given the CAPTCHA, and the javascript-submitted POST requests threw most of the tools that expected navigation through links for a loop. Still, most of the tools I reviewed have snazzy demos, and I was able to use some of them for extracting content from sites that were less challenging than the one I initially intended to scrape.

All hope is not lost, however. Where pure automation fails, a human can step in. Several proposals suggested paying people on oDesk, Mechanical Turk, or CrowdFlower to extract the content with a human touch. This would certainly get us past the CAPTCHA and hard-to-automate navigation. It might get pretty expensive to have humans copy/paste the data for extraction, however. Given that the tools above are good at extracting content from any single page, I suspect there’s room for a human-in-the-loop scraping tool to steal the show: humans can navigate and train the extraction step, and the machine can perform the extraction. I suspect that’s what import.io is up to, and I’m hopeful they keep the tool available to folks like the ones I initially tried to help.

While we’re on the topic of human-powered solutions, it might make sense to hire a developer on oDesk to just implement the scraper for the site this organization was looking at. While a lot of the developer-free tools I mentioned above look promising, there are clearly cases where paying someone for a few hours of script-building just makes sense.

Source: http://blog.marcua.net/post/74655674340

Sunday, 23 November 2014

Using Kimono Labs to Scrape the Web for Free

Historically, I have written and presented about big data—using data to create insights, and how to automate your data ingestion process by connecting to APIs and leveraging advanced database technologies.

Recently I spoke at SMX West about leveraging the rich data in webmaster tools. After the panel, I was approached by the in-house SEO of a small company, who asked me how he could extract and leverage all the rich data out there without having a development team or large budget. I pointed him to the CSV exports and some of the more hidden tools to extract Google data, such as the GA Query Builder and the YouTube Analytics Query Builder.

However, what do you do if there is no API? What do you do if you want to look at unstructured data, or use a data source that does not provide an export?

For today's analytics pros, the world of scraping—or content extraction (sounds less black hat)—has evolved a lot, and there are lots of great technologies and tools out there to help solve those problems. To do so, many companies have emerged that specialize in programmatic content extraction such as Mozenda, ScraperWiki, ImprtIO, and Outwit, but for today's example I will use Kimono Labs. Kimono is simple and easy to use and offers very competitive pricing (including a very functional free version). I should also note that I have no connection to Kimono; it's simply the tool I used for this example.

Before we get into the actual "scraping" I want to briefly discuss how these tools work.

The purpose of a tool like Kimono is to take unstructured data (not organized or exportable) and convert it into a structured format. The prime example of this is any ranking tool. A ranking tool reads Google's results page, extracts the information and, based on certain rules, it creates a visual view of the data which is your ranking report.

Kimono Labs allows you to extract this data either on demand or as a scheduled job. Once you've extracted the data, it then allows you to either download it via a file or extract it via their own API. This is where Kimono really shines—it basically allows you to take any website or data source and turn it into an API or automated export.

For today's exercise I would like to create two scrapers.

A. A ranking tool that will take Google's results and store them in a data set, just like any other ranking tool. (Disclaimer: this is meant only as an example, as scraping Google's results is against Google's Terms of Service).

B. A ranking tool for Slideshare. We will simulate a Slideshare search and then extract all the results including some additional metrics. Once we have collected this data, we will look at the types of insights you are able to generate.

1. Sign up

Signup is simple; just go to http://www.kimonolabs.com/signup and complete the form. You will then be brought to a welcome page where you will be asked to drag their bookmarklet into your bookmarks bar.

The Kimonify Bookmarklet is the trigger that will start the application.

2. Building a ranking tool

Simply navigate your browser to Google and perform a search; in this example I am going to use the term "scraping." Once the results pages are displayed, press the kimonify button (in some cases you might need to search again). Once you complete your search you should see a screen like the one below:

It is basically the default results page, but on the top you should see the Kimono Tool Bar. Let's have a close look at that:

The bar is broken down into a few actions:

    URL – Is the current URL you are analyzing.

    ITEM NAME – Once you define an item to collect, you should name it.

    ITEM COUNT – This will show you the number of results in your current collection.

    NEW ITEM – Once you have completed the first item, you can click this to start to collect the next set.

    PAGINATION – You use this mode to define the pagination link.

    UNDO – I hope I don't have to explain this ;)

    EXTRACTOR VIEW – The mode you see in the screenshot above.

    MODEL VIEW – Shows you the data model (the items and the type).

    DATA VIEW – Shows you the actual data the current page would collect.

    DONE – Saves your newly created API.

After you press the bookmarklet you need to start tagging the individual elements you want to extract. You can do this simply by clicking on the desired elements on the page (if you hover over it, it changes color for collectable elements).

Kimono will then try to identify similar elements on the page; it will highlight some suggested ones and you can confirm a suggestion via the little checkmark:

A great way to make sure you have the correct elements is by looking at the count. For example, we know that Google shows 10 results per page, therefore we want to see "10" in the item count box, which indicates that we have 10 similar items marked. Now go ahead and name your new item group. Each collection of elements should have a unique name. In this page, it would be "Title".

Now it's time to confirm the data; just click on the little Data icon to see a preview of the actual data this page would collect. In the data view you can switch between different formats (JSON, CSV and RSS). If everything went well, it should look like this:

As you can see, it not only extracted the visual title but also the underlying link. Good job!

To collect some more info, click on the Extractor icon again and pick out the next element.

Now click on the Plus icon and then on the description of the first listing. Since the first listing contains site links, it is not clear to Kimono what the structure is, so we need to help it along and click on the next description as well.

As soon as you do this, Kimono will identify some other descriptions; however, our count only shows 8 instead of the 10 items that are actually on that page. As we scroll down, we see some entries with author markup; Kimono is not sure if they are part of the set, so click the little checkbox to confirm. Your count should jump to 10.

Now that you identified all 10 objects, go ahead and name that group; the process is the same as in the Title example. In order to make our Tool better than others, I would like to add one more set— the author info.

Once again, click the Plus icon to start a new collection and scroll down to click on the author name. Because this is totally unstructured, Google will make a few recommendations; in this case, we are working on the exclusion process, so press the X for everything that's not an author name. Since the word "by" is included, highlight only the name and not "by" to exclude that (keep in mind you can always undo if things get odd).

Once you've highlighted both names, results should look like the one below, with the count in the circle being 2 representing the two authors listed on this page.

Out of interest I did the same for the number of people in their Google+ circles. Once you have done that, click on the Model View button, and you should see all the fields. If you click on the Data View you should see the data set with the authors and circles.

As a final step, let's go back to the Extractor view and define the pagination; just click the Pagination button (it looks like a book) and select the next link. Once you have done that, click Done.

You will be presented with a screen similar to this one:

Here you simply name your API, define how often you want this data to be extracted and how many pages you want to crawl. All of these settings can be changed manually; I would leave it with On demand and 10 pages max to not overuse your credits.

Once you've saved your API, there are a ton of options (too many to review here). Kimono has a great learning section you can check out any time.

To collect the listings requires a quick setup. Click on the pagination tab, turn it on and set your schedule to On demand to pull data when you ask it to. Your screen should look like this:

Now press Crawl and Kimono will start collecting your data. If you see any issues, you can always click on Edit API and go back to the extraction screen.

Once the crawl is completed, go to the Test Endpoint tab to view or download your data (I prefer CSV because you can easily open it in Excel, CSV, Spotfire, etc.) A possible next step here would be doing this for multiple keywords and then analyzing the impact of, say, G+ Authority on rankings. Again, many of you might say that a ranking tool can already do this, and that's true, but I wanted to cover the basics before we dive into the next one.

3. Extracting SlideShare data

With Slideshare's recent growth in popularity it has become a document sharing tool of choice for many marketers. But what's really on Slideshare, who are the influencers, what makes it tick? We can utilize a custom scraper to extract that kind data from Slideshare.

To get started, point your browser to Slideshare and pick a keyword to search for.

For our example I want to look at presentations that talk about PPC in English, sorted by popularity, so the URL would be:

http://www.slideshare.net/search/slideshow?ft=presentations&lang=en&page=1&q=ppc&qf=qf1&sort=views&ud=any

Once you are on that page, pick the Kimonify button as you did earlier and tag the elements. In this case I will tag:

    Title
    Description
    Category
    Author
    Likes
    Slides

Once you have tagged those, go ahead and add the pagination as described above.

That will make a nice rich dataset which should look like this:

Hit Done and you're finished. In order to quickly highlight the benefits of this rich data, I am going to load the data into Spotfire to get some interesting statics (I hope).

4. Insights

Rather than do a step-by-step walktrough of how to build dashboards, which you can find here, I just want to show you some insights you can glean from this data:

    Most Popular Authors by Category. This shows you the top contributors and the categories they are in for PPC (squares sized by Likes)

    Correlations. Is there a correlation between the numbers of slides vs. the number of likes? Why not find out?
    Category with the most PPC content. Discover where your content works best (most likes).

5. Output

One of the great things about Kimono we have not really covered is that it actually converts websites into APIs. That means you build them once, and each time you need the data you can call it up. As an example, if I call up the Slideshare API again tomorrow, the data will be different. So you basically appified Slisdeshare. The interesting part here is the flexibility that Kimono offers. If you go to the How to Use slide, you will see the way Kimono treats the Source URL In this case it looks like this:

The way you can pull data from Kimono aside from the export is their own API; in this case you call the default URL,

http://www.kimonolabs.com/api/YOURPAIID?apikey=YO...

You would get the default data from the original URL; however, as illustrated in the table above, you can dynamically adjust elements of the source URL.

For example, if you append "&q=SEO"

(http://www.kimonolabs.com/api/YOURPAIID?apikey=YOURAPIKEY&q=SEO)

you would get the top slides for SEO instead of PPC. You can change any of the URL options easily.

I know this was a lot of information, but believe me when I tell you, we just scratched the surface. Tools like Kimono offer a variety of advanced functions that really open up the possibilities. Once you start to realize the potential, you will come up with some amazing, innovative ideas. I would love to see some of them here shared in the comments. So get out there and start scraping … and please feel free to tweet at me or reply below with any questions or comments!

Source: http://moz.com/blog/web-scraping-with-kimono-labs

Wednesday, 19 November 2014

Web Scraping for Fun & Profit

There’s a number of ways to retrieve data from a backend system within mobile projects. In an ideal world, everything would have a RESTful JSON API – but often, this isn’t the case.Sometimes, SOAP is the language of the backend. Sometimes, it’s some proprietary protocol which might not even be HTTP-based. Then, there’s scraping.

Retrieving information from web sites as a human is easy. The page communicates information using stylistic elements like headings, tables and lists – this is the communication protocol of the web. Machines retrieve information with a focus on structure rather than style, typically using communication protocols like XML or JSON. Web scraping attempts to bridge this human protocol into a machine-readable format like JSON. This is what we try to achieve with web scraping.

As a means of getting to data, it don’t get much worse than web scraping. Scrapers were often built with Regular Expressions to retrieve the data from the page. Difficult to craft, impossible to maintain, this means of retrieval was far from ideal. The risks are many – even the slightest layout change on a web page can upset scraper code, and break the entire integration. It’s a fragile means for building integrations, but sometimes it’s the only way.

Having built a scraper service recently, the most interesting observation for me is how far we’ve come from these “dark days”. Node.js, and the massive ecosystem of community built modules has done much to change how these scraper services are built.

Effectively Scraping Information

Websites are built on the Document Object Model, or DOM. This is a tree structure, which represents the information on a page.By interpreting the source of a website as a DOM, we can retrieve information much more reliably than using methods like regular expression matching. The most popular method of querying the DOM is using jQuery, which enables us to build powerful and maintainable queries for information. The JSDom Node module allows us to use a DOM-like structure in serverside code.

For purpose of Illustration, we’re going to scrape the blog page of FeedHenry’s website. I’ve built a small code snippet that retrieves the contents of the blog, and translates it into a JSON API. To find the queries I need to run, first I need to look at the HTML of the page. To do this, in Chrome, I right-click the element I’m looking to inspect on the page, and click “Inspect Element”.

Screen Shot 2014-09-30 at 10.44.38

Articles on the FeedHenry blog are a series of ‘div’ elements with the ‘.itemContainer’ class

Searching for a pattern in the HTML to query all blog post elements, we construct the `div.itemContainer` query. In jQuery, we can iterate over these using the .each method:

var posts = [];

$('div.itemContainer').each(function(index, item){

  // Make JSON objects of every post in here, pushing to the posts[] array

});

From there, we pick off the heading, author and post summary using a child selector on the original post, querying the relevant semantic elements:

    Post Title, using jQuery:

    $(item).find('h3').text()trim() // trim, because titles have white space either side

    Post Author, using jQuery:

    $(item).find('.catItemAuthor a').text()

    Post Body, using jQuery:

    $(item).find('p').text()

Adding some JSDom magic to our snippet, and pulling together the above two concept (iterating through posts, and picking off info from each post), we get this snippet:

var request = require('request'),

jsdom = require('jsdom');

jsdom.env(

  "http://www.feedhenry.com/category/blog",

  ["http://code.jquery.com/jquery.js"],

  function (errors, window) {

    var $ = window.$, // Alias jQUery

    posts = [];

    $('div.itemContainer').each(function(index, item){

      item = $(item); // make queryable in JQ

      posts.push({

        heading : item.find('h3').text().trim(),

        author : item.find('.catItemAuthor a').text(),

        teaser : item.find('p').text()

      });

    });

    console.log(posts);

  }

);

A note on building CSS Queries

As with styling web sites with CSS, building effective CSS queries is equally as important when building a scraper. It’s important to build queries that are not too specific, or likely to break when the structure of the page changes. Equally important is to pick a query that is not too general, and likely to select extra data from the page you don’t want to retrieve.

A neat trick for generating the relevant selector statement is to use Chrome’s “CSS Path” feature in the inspector. After finding the element in the inspector panel, right click, and select “Copy CSS Path”. This method is good for individual items, but for picking repeating patterns (like blog posts), this doesn’t work though. Often, the path it gives is much too specific, making for a fragile binding. Any changes to the page’s structure will break the query.

Making a Re-usable Scraping Service

Now that we’ve retrieved information from a web page, and made some JSON, let’s build a reusable API from this. We’re going to make a FeedHenry Blog Scraper service in FeedHenry3. For those of you not familiar with service creation, see this video walkthrough.

We’re going to start by creating a “new mBaaS Service”, rather than selecting one of the off-the-shelf services. To do this, we modify the application.js file of our service to include one route, /blog, which includes our code snippet from earlier:

// just boilerplate scraper setup

var mbaasApi = require('fh-mbaas-api'),

express = require('express'),

mbaasExpress = mbaasApi.mbaasExpress(),

cors = require('cors'),

request = require('request'),

jsdom = require('jsdom');

var app = express();

app.use(cors());

app.use('/sys', mbaasExpress.sys([]));

app.use('/mbaas', mbaasExpress.mbaas);

app.use(mbaasExpress.fhmiddleware());

// Our /blog scraper route

app.get('/blog', function(req, res, next){

  jsdom.env(

    "http://www.feedhenry.com/category/blog",

    ["http://code.jquery.com/jquery.js"],

    function (errors, window) {

      var $ = window.$, // Alias jQUery

      posts = [];

      $('div.itemContainer').each(function(index, item){

        item = $(item); // make queryable in JQ

        posts.push({

          heading : item.find('h3').text().trim(),

          author : item.find('.catItemAuthor a').text(),

          teaser : item.find('p').text()

        });

      });

      return res.json(posts);

    }

  );

});

app.use(mbaasExpress.errorHandler());

var port = process.env.FH_PORT || process.env.VCAP_APP_PORT || 8001;

var server = app.listen(port, function() {});

We’re also going to write some documentation for our service, so we (and other developers) can interact with it using the FeedHenry discovery console. We’re going to modify the README.md file to document what we’ve just done using API Blueprint documentation format:

# FeedHenry Blog Web Scraper

This is a feedhenry blog scraper service. It uses the `JSDom` and `request` modules to retrieve the contents of the FeedHenry developer blog, and parse the content using jQuery.

# Group Scraper API Group

# blog [/blog]

Blog Endpoint

## blog [GET]

Get blog posts endpoint, returns JSON data.

+ Response 200 (application/json)

    + Body

            [{ blog post}, { blog post}, { blog post}]

We can now try out the scraper service in the studio, and see the response:

Scraping – The Ultimate in API Creation?

Now that I’ve described some modern techniques for effectively scraping data from web sites, it’s time for some major caveats. First,  WordPress blogs like ours already have feeds and APIs available to developers - there’s no need to ever scrape any of this content. Web Scraping is not a replacement for an API. It should be used only as a last resort, after every endeavour to discover an API has already been made. Using a web scraper in a commercial setting requires much time set aside to maintain the queries, and an agreement with the source data is being scraped on to alert developers in the event the page changes structure.

With all this in mind, it can be a useful tool to iterate quickly on an integration when waiting for an API, or as a fun hack project.

Source: http://www.feedhenry.com/web-scraping-fun-profit/

Monday, 17 November 2014

Get started with screenscraping using Google Chrome’s Scraper extension

How do you get information from a website to a Excel spreadsheet? The answer is screenscraping. There are a number of softwares and plattforms (such as OutWit Hub, Google Docs and Scraper Wiki) that helps you do this, but none of them are – in my opinion – as easy to use as the Google Chrome extension Scraper, which has become one of my absolutely favourite data tools.

What is a screenscraper?

I like to think of a screenscraper as a small robot that reads websites and extracts pieces of information. When you are able to unleash a scraper on hundreads, thousands or even more pages it can be an incredibly powerful tool.

In its most simple form, the one that we will look at in this blog post, it gathers information from one webpage only.

Google Chrome’s Scraper

Scraper is an Google Chrome extension that can be installed for free at Chrome Web Store.

Image

Now if you installed the extension correctly you should be able to see the option “Scrape similar” if you right-click any element on a webpage.

The Task: Scraping the contact details of all Swedish MPs

Image

This is the site we’ll be working with, a list of all Swedish MPs, including their contact details. Start by right-clicking the name of any person and chose Scrape similar. This should open the following window.

Understanding XPaths

At w3schools you’ll find a broader introduction to XPaths.

Before we move on to the actual scrape, let me briefly introduce XPaths. XPath is a language for finding information in an XML structure, for example an HTML file. It is a way to select tags (or rather “nodes”) of interest. In this case we use XPaths to define what parts of the webpage that we want to collect.

A typical XPath might look something like this:

    //div[@id="content"]/table[1]/tr

Which in plain English translates to:

    // - Search the whole document...

    div[@id="content"] - ...for the div tag with the id "content".

    table[1] -  Select the first table.

    tr - And in that table, grab all rows.

Over to Scraper then. I’m given the following suggested XPath:

    //section[1]/div/div/div/dl/dt/a

The results look pretty good, but it seems we only get names starting with an A. And we would also like to collect to phone numbers and party names. So let’s go back to the webpage and look at the HTML structure.

Right-click one of the MPs and chose Inspect element. We can see that each alphabetical list is contained in a section tag with the class “grid_6 alpha omega searchresult container clist”.

 And if we open the section tag we find the list of MPs in div tags.

We will do this scrape in two steps. Step one is to select the tags containing all information about the MPs with one XPath. Step two is to pick the specific pieces of data that we are interested in (name, e-mail, phone number, party) and place them in columns.

Writing our XPaths

In step one we want to try to get as deep into the HTML structure as possible without losing any of the elements we are interested in. Hover the tags in the Elements window to see what tags correspond to what elements on the page.

In our case this is the last tag that contains all the data we are looking for:

    //section[@class="grid_6 alpha omega searchresult container clist"]/div/div/div/dl

Click Scrape to test run the XPath. It should give you a list that looks something like this.

Scroll down the list to make sure it has 349 rows. That is the number of MPs in the Swedish parliament. The second step is to split this data into columns. Go back to the webpage and inspect the HTML code.

I have highlighted the parts that we want to extract. Grab them with the following XPaths:

    name: dt/a
    party: dd[1]
    region: dd[2]/span[1]
    seat: dd[2]/span[2]
    phone: dd[3]
    e-mail: dd[4]/span/a

Insert these paths in the Columns field and click Scrape to run the scraper.

Click Export to Google Docs to get the data into a spreadsheet.

Source: http://dataist.wordpress.com/2012/10/12/get-started-with-screenscraping-using-google-chromes-scraper-extension/

Saturday, 15 November 2014

Screen-scraping with WWW::Mechanize

Screen-scraping is the process of emulating an interaction with a Web site - not just downloading pages, but filling out forms, navigating around the site, and dealing with the HTML received as a result. As well as for traditional lookups of information - like the example we'll be exploring in this article - we can use screen-scraping to enhance a Web service into doing something the designers hadn't given us the power to do in the first place. Here's an example:

I do my banking online, but get quickly bored with having to go to my bank's site, log in, navigate around to my accounts and check the balance on each of them. One quick Perl module (Finance::Bank::HSBC) later, and now I can loop through each of my accounts and print their balances, all from a shell prompt. Some more code, and I can do something the bank's site doesn't ordinarily let me - I can treat my accounts as a whole instead of individual accounts, and find out how much money I have, could possibly spend, and owe, all in total.

Another step forward would be to schedule a crontab every day to use the HSBC option to download a copy of my transactions in Quicken's QIF format, and use Simon Cozens' Finance::QIF module to interpret the file and run those transactions against a budget, letting me know whether I'm spending too much lately. This takes a simple Web-based system from being merely useful to being automated and bespoke; if you can think of how to write the code, then you can do it. (It's probably wise for me to add the caveat, though, that you should be extremely careful working with banking information programatically, and even more careful if you're storing your login details in a Perl script somewhere.)

Back to screen-scrapers, and introducing WWW::Mechanize, written by Andy Lester and based on Skud's WWW::Automate. Mechanize allows you to go to a URL and explore the site, following links by name, taking cookies, filling in forms and clicking "submit" buttons. We're also going to use HTML::TokeParser to process the HTML we're given back, which is a process I've written about previously.

The site I've chosen to demonstrate on is the BBC's Radio Times site, which allows users to create a "Diary" for their favorite TV programs, and will tell you whenever any of the programs is showing on any channel. Being a London Perl M[ou]nger, I have an obsession with Buffy the Vampire Slayer. If I tell this to the BBC's site, then it'll tell me when the next episode is, and what the episode name is - so I can check whether it's one I've seen before. I'd have to remember to log into their site every few days to check whether there was a new episode coming along, though. Perl to the rescue! Our script will check to see when the next episode is and let us know, along with the name of the episode being shown.

Here's the code:

  #!/usr/bin/perl -w
  use strict;
  use WWW::Mechanize;
  use HTML::TokeParser;

If you're going to run the script yourself, then you should register with the Radio Times site and create a diary, before giving the e-mail address you used to do so below.

  my $email = ";
  die "Must provide an e-mail address" unless $email ne ";

We create a WWW::Mechanize object, and tell it the address of the site we'll be working from. The Radio Times' front page has an image link with an ALT text of "My Diary", so we can use that to get to the right section of the site:

  my $agent = WWW::Mechanize->new();
  $agent->get("http://www.radiotimes.beeb.com/");
  $agent->follow("My Diary");

The returned page contains two forms - one to allow you to choose from a list box of program types, and then a login form for the diary function. We tell WWW::Mechanize to use the second form for input. (Something to remember here is that WWW::Mechanize's list of forms, unlike an array in Perl, is indexed starting at 1 rather than 0. Our index is, therefore,'2.')

  $agent->form(2);

Now we can fill in our e-mail address for the '<INPUT name="email" type="text">' field, and click the submit button. Nothing too complicated.

  $agent->field("email", $email);
  $agent->click();

WWW::Mechanize moves us to our diary page. This is the page we need to process to find the date details from. Upon looking at the HTML source for this page, we can see that the HTML we need to work through is something like:

  <input>
  <tr><td></td></tr>
  <tr><td></td><td></td><td class="bluetext">Date of episode</td></tr>
  <td></td><td></td>
  <td class="bluetext"><b>Time of episode</b></td></tr>
  <a href="page_with_episode_info"></a>

This can be modeled with HTML::TokeParser as below. The important methods to note are get_tag - which will move the stream on to the next opening for the tag given - and get_trimmed_text, which returns the text between the current and given tags. For example, for the HTML code "<b>Bold text here</b>", my $tag = get_trimmed_text("/b") would return "Bold text here" to $tag.

Also note that we're initializing HTML::TokeParser on '\$agent->{content}' - this is an internal variable for WWW::Mechanize, exposing the HTML content of the current page.

  my $stream = HTML::TokeParser->new(\$agent->{content});
  my $date;
    # <input>
  $stream->get_tag("input");
  # <tr><td></td></tr><tr>
  $stream->get_tag("tr"); $stream->get_tag("tr");
  # <td></td><td></td>
  $stream->get_tag("td"); $stream->get_tag("td");
  # <td class="bluetext">Date of episode</td></tr>
  my $tag = $stream->get_tag("td");
  if ($tag->[1]{class} and $tag->[1]{class} eq "bluetext") {
      $date = $stream->get_trimmed_text("/td");
      # The date contains '&nbsp;', which we'll translate to a space.
      $date =~ s/\xa0/ /g;
  }
   # <td></td><td></td>
  $stream->get_tag("td");
  # <td class="bluetext"><b>Time of episode</b> 
  $tag = $stream->get_tag("td");
  if ($tag->[1]{class} eq "bluetext") {
      $stream->get_tag("b");
      # This concatenates the time of the showing to the date.
      $date .= ", from " . $stream->get_trimmed_text("/b");
  }
  # </td></tr><a href="page_with_episode_info"></a>
  $tag = $stream->get_tag("a");
  # Match the URL to find the page giving episode information.
  $tag->[1]{href} =~ m!src=(http://.*?)'!;

We have a scalar, $date, containing a string that looks something like "Thursday 23 January, from 6:45pm to 7:30pm.", and we have an URL, in $1, that will tell us more about that episode. We tell WWW::Mechanize to go to the URL:

  $agent->get($1);

The navigation we want to perform on this page is far less complex than on the last page, so we can avoid using a TokeParser for it - a regular expression should suffice. The HTML we want to parse looks something like this:

  <br><b>Episode</b><br>  The Episode Title<br>

We use a regex delimited with '!' in order to avoid having to escape the slashes present in the HTML, and store any number of alphanumeric characters after some whitespace, all between <br> tags after the Episode header:

  $agent->{content} =~ m!<br><b>Episode</b><br>\s+?(\w+?)<br>!;

$1 now contains our episode, and all that's left to do is print out what we've found:

  my $episode = $1;
  print "The next Buffy episode ($episode) is on $date.\n";

And we're all set. We can run our script from the shell:

  $ perl radiotimes.pl

  The next Buffy episode (Gone) is Thursday Jan. 23, from 6:45 to 7:30 p.m.
I hope this gives a light-hearted introduction to the usefulness of the modules involved. As a note for your own experiments, WWW::Mechanize supports cookies - in that the requestor is a normal LWP::UserAgent object - but they aren't enabled by default. If you need to support cookies, then your script should call "use HTTP::Cookies; $agent->cookie_jar(HTTP::Cookies->new);" on your agent object in order to enable session-volatile cookies for your own code.
Happy screen-scraping, and may you never miss a Buffy episode again.

Source: http://www.perl.com/pub/2003/01/22/mechanize.html

Thursday, 13 November 2014

Interactive Crawls for Scraping AJAX Pages on the Web

Crawling pages on the web has become an everyday affair for most enterprises. Too often do we come across offline businesses as well who’d like data gathered from the web for internal analyses. All this eventually to serve customers faster and better. At times, when the crawl job is high-end cum high-scale, businesses also consider DaaS providers to supplement their efforts.

However, the web landscape too has evolved with newer technologies that provide fancy experiences to web users. AJAX elements are one such common aid that leave even the DaaS providers perplexed. They come in various forms from a user’s point of view-

1. Load more results on the same page

2. Filter results based on various selection criteria

3. Submit forms, etc.

When crawling a non-AJAX page, simple GET requests do the job. However, AJAX pages work with POST requests that are not easy to trace for a normal bot.

Difference between GET request and POST request- Scraping

GET vs. POST

At PromptCloud, from our experience with a number of AJAX sites on the web, we’ve crossed the tech barrier. Below is a quick review about the challenges that come with AJAX crawling and its indicative solutions-

1. Javascript Emulations- A bot essentially emulates human browsing to fetch pages. When this needs to be done for Javascript components on a page, it gets tricky. Headless browser, which emulates human interaction with a web page without an interface, is the current approach. These browsers click on various elements/ dropdown lists that are embedded within Javascript code and capture responses to be transferred to programs. Which headless browser to pick depends on what fits well into your current stack.

2. Fetch Bandwidths- Unlike GET requests which complete pretty quickly, POST requests take quite a bit of time due to the number of events involved per fetch. Hence a good amount of bandwidth needs to be allocated in order to receive the response. For the same reason, wait times need to be taken care of too else you might end up with incomplete responses.

3. .NET Architectures- This is a more complex scenario related to maintaining the View State. Most of the postbacks come with an event and its validation. The bot needs to track the view state and pass validations for the event to occur so that the code can be executed and results captured. This is achieved by adopting a mechanism to restore states if things break midway.

4. Page Encoding- Request and response headers need to be taken care of on AJAX pages. The request needs to be sent in the exact format as expected by the server (Content-type or media type, accept fields, etc.) and similarly responses need to be parsed based on the content-type.

A Use Case

One of our clients who is into sale of event tickets at discounted rates had us crawl one of the ticketing sites on the web weekly; one of the most complex AJAX crawling we’ve dealt with so far. For the data that was to be extracted, multiple AJAX fetches were needed depending on the selections made. Requests had to be made for a combination of items from the dropdown box. These came with cookies and session IDs. To add to the challenge the site was extremely dynamic and changed its structure every week making it difficult for us to follow what data was where on the page.

We developed an AJAX crawler specific to this site to take care of all the dynamics. Response times were taken care of so that we didn’t miss any relevant information. We included an ML component to improve the crawler which is now pretty stable irrespective of changes on the site.

Overall, AJAX crawling requires more compute power in addition to the tech expertise. And because there’s no uniformity on the web, there’s always a new challenge to overcome in this landscape. It wouldn’t be an overrating if we said we’ve done a good job at that so far and have developed the knack :)

Reach out to us for any kind of web scraping/ crawling- either AJAX or not. We’ll take care of the complexities.

Source: https://www.promptcloud.com/blog/web-scraping-interactive-ajax-crawls/

Wednesday, 12 November 2014

Web scraping services-importance of scraped data

Web scraping services are provided by computer software which extracts the required facts from the website. Web scraping services mainly aims at converting unstructured data collected from the websites into structured data which can be stockpiled and scrutinized in a centralized databank. Therefore, web scraping services have a direct influence on the outcome of the reason as to why the data collected in necessary.

It is not very easy to scrap data from different websites due to the terms of service in place. So, the there are some legalities that have been improvised to protect altering the personal information on different websites. These ‘rules’ must be followed to the letter and to some extent have limited web scraping services.

Owing to the high demand for web scraping, various firms have been set up to provide the efficient and reliable guidelines on web scraping services so that the information acquired is correct and conforms to the security requirements. The firms have also improvised different software that makes web scraping services much easier.

Importance of web scraping services

Definitely, web scraping services have gone a long way in provision of very useful information to various organizations. But business companies are the ones that benefit more from web scraping services. Some of the benefits associated with web scraping services are:

    Helps the firms to easily send notifications to their customers including price changes, promotions, introduction of a new product into the market. Etc.
    It enables firms to compare their product prices with those of their competitors
    It helps the meteorologists to monitor weather changes thus being able to focus weather conditions more efficiently
    It also assists researchers with extensive information about peoples’ habits among many others.
    It has also promoted e-commerce and e-banking services where the rates of stock exchange, banks’ interest rates, etc. are updated automatically on the customer’s catalog.

Advantages of web scraping services

The following are some of the advantages of using web scraping services

    Automation of the data

    Web scraping can retrieve both static and dynamic web pages

    Page contents of various websites can be transformed

    It allows formulation of vertical aggregation platforms thus even complicated data can still be extracted from different websites.

    Web scraping programs recognize semantic annotation

    All the required data can be retrieved from their websites

    The data collected is accurate and reliable

Web scraping services mainly aims at collecting, storing and analyzing data. The data analysis is facilitated by various web scrapers that can extract any information and transform it into useful and easy forms to interpret.

Challenges facing web scraping

    High volume of web scraping can cause regulatory damage to the pages

    Scale of measure; the scales of the web scraper can differ with the units of measure of the source file thus making it somewhat hard for the interpretation of the data

    Level of source complexity; if the information being extracted is very complicated, web scraping will also be paralyzed.

It is clear that besides web scraping providing useful data and information, it experiences a number of challenges. The good thing is that the web scraping services providers are always improvising techniques to ensure that the information gathered is accurate, timely, reliable and treated with the highest levels of confidentiality.

Source: http://www.loginworks.com/blogs/web-scraping-blogs/191-web-scraping-services-importance-of-scraped-data/

Monday, 10 November 2014

How to scrape Amazon with WebDriver in Java

Here is a real-world example of using Selenium WebDriver for scraping.
This short program is written in Java and scrapes book title and author from the Amazon webstore.
This code scrapes only one page, but you can easily make it scraping all the pages by adding a couple of lines.

You can download the souce here.

import java.io.*;
import java.util.*;
import java.util.regex.*;

import org.openqa.selenium.*;
import org.openqa.selenium.firefox.FirefoxDriver;


public class FetchAllBooks {

    public static void main(String[] args) throws IOException {

        WebDriver driver = new FirefoxDriver();
      

driver.navigate().to("http://www.amazon.com/tag/center%20right?ref_=tag_dpp_cust_itdp_s_t&sto

re=1");

        List<WebElement> allAuthors =  driver.findElements(By.className("tgProductAuthor"));
        List<WebElement> allTitles =  driver.findElements(By.className("tgProductTitleText"));
        int i=0;
        String fileText = "";

        for (WebElement author : allAuthors){
            String authorName = author.getText();
            String Url = (String)((JavascriptExecutor)driver).executeScript("return

arguments[0].innerHTML;", allTitles.get(i++));
            final Pattern pattern = Pattern.compile("title=(.+?)>");
            final Matcher matcher = pattern.matcher(Url);
            matcher.find();
            String title = matcher.group(1);
            fileText = fileText+authorName+","+title+"\n";
        }

        Writer writer = new BufferedWriter(new OutputStreamWriter(new

FileOutputStream("books.csv"), "utf-8"));
        writer.write(fileText);
        writer.close();

        driver.close();
    }
}

Source: http://scraping.pro/scraping-amazon-webdriver-java/

Saturday, 8 November 2014

Web Scraping Enters Politics

Web scraping is becoming an essential tool in gaining an edge over everything about just anything. This is proven by international news on US political campaigns, specifically by identifying wealthy donors. As is commonly known, election campaigns should follow a rule regarding the use of a certain limited amount of money for the expenses of each candidate. Being so, much of the campaign activities must be paid by supporters and sponsors.

It is not a surprise then that even politics is lured to make use of the dynamic and ever growing data mining processes. Once again, web mining has proven to be an essential component of almost all levels of human existence, the society, and the world as a whole. It proves its extraordinary capacity to dig precious information to reach the much aspired for goals of every individual.

Mining for personal information

The CBC News online very recently disclosed that the US Republican presidential candidate Mitt Romney has used data mining in order to identify rich donors. It is reported that the act of getting personal information such as the buying history and church attendance were vital in this incident. Through this information, the party was able to identify prospective rich donors and indeed tap them. As a businessman himself, Romney knows exactly how to fish and where the fat fish are. Moreover, what is unique about the identified donors is that they have never been donating before.

Source:http://www.loginworks.com/blogs/web-scraping-blogs/web-scraping-enters-politics/

Wednesday, 5 November 2014

Web Scraping: The Invaluable Decision Making Tool

Business decisions are mandatory in any company. They reflect and directly influence about the future of the company. It is important to realize that decisions must be made in any business situation. The generation of new ideas calls for new actions. This in turn calls for decisions. Decisions can only be made when there is adequate information or data regarding the problem and the cause of action to be taken. Web scraping offers the best opportunity in getting the required information that will enable the management make a wise and sound decision.

Therefore web scraping is an important part in generation of the practical interpretations for the business decision making process. Since businesses take many courses of actions the following areas call for adequate web scraping in order to make outstanding decisions.

1. Suppliers. Whether you are running an offline business there is need to get information regarding your suppliers. In this case there are two situations. The first situation is about your current suppliers and the second situation is about the possibility of acquiring new suppliers. By web scraping you has the opportunity to gather about your suppliers. You need to know other business they are supplying to and the kind of discounts and prices they offer to them. Another important aspect about consumers is to determine the periods when they have surplus and therefore be able to determine the purchasing prices.

Web scraping can provide new information concerning new suppliers. This will make a cutting edge in the purchasing sector. You can get new suppliers that have reasonable prices. This will go a long way in ensuring a profitable business. Therefore web scraping is an integral process that should be taken first before making a vital decision concerning suppliers.

Source:http://www.loginworks.com/blogs/web-scraping-blogs/web-scraping-invaluable-decision-making-tool/